Skip to content

Weirdo multiprocessing: Shared objects taking more time in sharing smaller data than larger data between multiple processes.  #126471

Open
@ayushbisht2001

Description

@ayushbisht2001

Bug report

Bug description:

server.py

from multiprocessing.managers import BaseManager
from queue import Queue
queue = Queue()
class QueueManager(BaseManager): pass
QueueManager.register('get_queue', callable=lambda:queue)
m = QueueManager(address=('', 5000), authkey=b'abracadabra')
s = m.get_server()
s.serve_forever()

consumer.py

import time

from multiprocessing.managers import BaseManager

class QueueManager(BaseManager): pass

QueueManager.register('get_queue')
m = QueueManager(address=('', 5000), authkey=b'abracadabra')
m.connect()
queue = m.get_queue()

while True:
    t = time.time()
    x = queue.get()

producerA.py

from multiprocessing.managers import BaseManager
import time
import numpy as np

class QueueManager(BaseManager): pass

QueueManager.register('get_queue')

m = QueueManager(address=('', 5000), authkey=b'abracadabra')
m.connect()
queue = m.get_queue()

out_img = np.zeros((128, 128, 3), dtype=np.uint8)

for i in range(100):
    t = time.time()
    queue.put(
    {
        'type' : 'not working',
        'data': out_img
    }    
    )
    print('put took', (time.time() - t)*1000)

producerB.py

from multiprocessing.managers import BaseManager
import time
import numpy as np

class QueueManager(BaseManager): pass

QueueManager.register('get_queue')

m = QueueManager(address=('', 5000), authkey=b'abracadabra')
m.connect()
queue = m.get_queue()

out_img = np.zeros((256, 256, 3), dtype=np.uint8)

for i in range(100):
    t = time.time()
    queue.put(
    {
        'type' : 'not working',
        'data': out_img
    }    
    )
    print('put took', (time.time() - t)*1000)

steps to reproduce the issue

  • run server.py
  • run consumer.py
  • run producerA.py and check the put time and compare it with producerB.py put time.

put time in producerA.py is higher than producerB.py, however the size of data being send through shared queue objects is more in producerB.py( 256x256 ) than in producerA.py (128x128).
I don't have much context if this is related to numpy or cpython multiprocessing, but this is definitely shouldn't be the case.
Ideally it should take more time in producerB.py beacuase the size of data is relatively higher relative to producerA.py.

This is my first bug report, I'm hoping to learn something...

Thanks everyone...

CPython versions tested on:

3.10

Operating systems tested on:

Linux

Metadata

Metadata

Assignees

No one assigned

    Labels

    extension-modulesC modules in the Modules dirpendingThe issue will be closed if no feedback is providedtopic-multiprocessingtype-bugAn unexpected behavior, bug, or error

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions