Skip to main content
edited body
Source Link

$$\begin{bmatrix} \begin{array}{cc|cc|cc|cc} 0 && \frac{d}{dr} + \frac{1 + h}{r} && 0 && f_g\frac{v}{\sqrt{2}}h \\ \hline -\frac{d}{dr} + \frac{h-1}{r} && 0 && -f_g\frac{v}{\sqrt{2}}h && 0 \\ \hline 0 && -f_g\frac{v}{\sqrt{2}}h && 0 && -\frac{d}{dr} - \frac{2}{r} \\ \hline f_g \frac{v}{\sqrt{2}}h && 0 && \frac{d}{dr} && 0 \end{array} \end{bmatrix} \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} = ε \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} $$$$\begin{bmatrix} \begin{array}{cc|cc|cc|cc} 0 && \frac{d}{dr} + \frac{1 + k}{r} && 0 && f_g\frac{v}{\sqrt{2}}h \\ \hline -\frac{d}{dr} + \frac{k-1}{r} && 0 && -f_g\frac{v}{\sqrt{2}}h && 0 \\ \hline 0 && -f_g\frac{v}{\sqrt{2}}h && 0 && -\frac{d}{dr} - \frac{2}{r} \\ \hline f_g \frac{v}{\sqrt{2}}h && 0 && \frac{d}{dr} && 0 \end{array} \end{bmatrix} \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} = ε \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} $$

$$\begin{bmatrix} \begin{array}{cc|cc|cc|cc} 0 && \frac{d}{dr} + \frac{1 + h}{r} && 0 && f_g\frac{v}{\sqrt{2}}h \\ \hline -\frac{d}{dr} + \frac{h-1}{r} && 0 && -f_g\frac{v}{\sqrt{2}}h && 0 \\ \hline 0 && -f_g\frac{v}{\sqrt{2}}h && 0 && -\frac{d}{dr} - \frac{2}{r} \\ \hline f_g \frac{v}{\sqrt{2}}h && 0 && \frac{d}{dr} && 0 \end{array} \end{bmatrix} \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} = ε \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} $$

$$\begin{bmatrix} \begin{array}{cc|cc|cc|cc} 0 && \frac{d}{dr} + \frac{1 + k}{r} && 0 && f_g\frac{v}{\sqrt{2}}h \\ \hline -\frac{d}{dr} + \frac{k-1}{r} && 0 && -f_g\frac{v}{\sqrt{2}}h && 0 \\ \hline 0 && -f_g\frac{v}{\sqrt{2}}h && 0 && -\frac{d}{dr} - \frac{2}{r} \\ \hline f_g \frac{v}{\sqrt{2}}h && 0 && \frac{d}{dr} && 0 \end{array} \end{bmatrix} \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} = ε \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} $$

added 3 characters in body
Source Link

\$\frac{d^2}{dr^2} K(r) = \frac{K(r)}{r^2}(K^2(r) -1) -4 g^2v^2k^2K(r)\$\$\frac{d^2}{dr^2} K(r) = \frac{K(r)}{r^2}(K^2(r) -1) -4 g^2v^2h^2(r)K(r)\$

\$\frac{d^2}{dr^2} h(r) + \frac{2}{r} \frac{d}{dr} h(r) = \frac{2}{r^2}K^2(r)h(r) -4 v^2λ(1-h^2(r))k(r)\$\$\frac{d^2}{dr^2} h(r) + \frac{2}{r} \frac{d}{dr} h(r) = \frac{2}{r^2}K^2(r)h(r) -4 v^2λ(1-h^2(r))h(r)\$

\$\frac{d^2}{dr^2} K(r) = \frac{K(r)}{r^2}(K^2(r) -1) -4 g^2v^2k^2K(r)\$

\$\frac{d^2}{dr^2} h(r) + \frac{2}{r} \frac{d}{dr} h(r) = \frac{2}{r^2}K^2(r)h(r) -4 v^2λ(1-h^2(r))k(r)\$

\$\frac{d^2}{dr^2} K(r) = \frac{K(r)}{r^2}(K^2(r) -1) -4 g^2v^2h^2(r)K(r)\$

\$\frac{d^2}{dr^2} h(r) + \frac{2}{r} \frac{d}{dr} h(r) = \frac{2}{r^2}K^2(r)h(r) -4 v^2λ(1-h^2(r))h(r)\$

correct function name k -> h
Source Link

\$\frac{d^2}{dr^2} k(r) + \frac{2}{r} \frac{d}{dr} k(r) = \frac{2}{r^2}K^2(r)k(r) -4 v^2λ(1-k^2(r))k(r)\$\$\frac{d^2}{dr^2} h(r) + \frac{2}{r} \frac{d}{dr} h(r) = \frac{2}{r^2}K^2(r)h(r) -4 v^2λ(1-h^2(r))k(r)\$

\$k(0) = 0; K(0) = 1; k(∞) = 1; K(∞) = 0\$\$h(0) = 0; K(0) = 1; h(∞) = 1; K(∞) = 0\$

\$\frac{d}{dr}F_L(r) + \frac{1+K(r)}{r} F_L(r) +f_g\frac{v}{\sqrt{2}} k(r)F_R(r) = ε G_L(r)\$\$\frac{d}{dr}F_L(r) + \frac{1+K(r)}{r} F_L(r) +f_g\frac{v}{\sqrt{2}} h(r)F_R(r) = ε G_L(r)\$

\$\frac{d}{dr}G_L(r) + \frac{1-k(r)}{r} G_L(r) +f_g\frac{v}{\sqrt{2}} k(r)G_R(r) = -ε F_L(r)\$\$\frac{d}{dr}G_L(r) + \frac{1-h(r)}{r} G_L(r) +f_g\frac{v}{\sqrt{2}} h(r)G_R(r) = -ε F_L(r)\$

\$\frac{d}{dr}F_(r) + \frac{2}{r} F_R(r) +f_g\frac{v}{\sqrt{2}} k(r)F_L(r) = -ε G_R(r)\$\$\frac{d}{dr}F_(r) + \frac{2}{r} F_R(r) +f_g\frac{v}{\sqrt{2}} h(r)F_L(r) = -ε G_R(r)\$

\$\frac{d}{dr}G_R(r) + f_g\frac{v}{\sqrt{2}} k(r)G_L(r) = ε F_R(r)\$\$\frac{d}{dr}G_R(r) + f_g\frac{v}{\sqrt{2}} h(r)G_L(r) = ε F_R(r)\$

In the first set of equations, \$r\$ is a variable, \$K(r)\$ and \$k(r)\$\$h(r)\$, are functions of \$r\$ and \$v\$, \$g\$ and \$λ\$ are parameters. After solving the first set, I want to put \$K(r)\$ and \$k(r)\$\$h(r)\$ in the second set which is an eigensystem with the eigenvalue \$ε\$, where \$f_g\$ is a parameter.

$$\begin{bmatrix} \begin{array}{cc|cc|cc|cc} 0 && \frac{d}{dr} + \frac{1 + k}{r} && 0 && f_g\frac{v}{\sqrt{2}}k \\ \hline -\frac{d}{dr} + \frac{k-1}{r} && 0 && -f_g\frac{v}{\sqrt{2}}k && 0 \\ \hline 0 && -f_g\frac{v}{\sqrt{2}}k && 0 && -\frac{d}{dr} - \frac{2}{r} \\ \hline f_g \frac{v}{\sqrt{2}}k && 0 && \frac{d}{dr} && 0 \end{array} \end{bmatrix} \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} = ε \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} $$$$\begin{bmatrix} \begin{array}{cc|cc|cc|cc} 0 && \frac{d}{dr} + \frac{1 + h}{r} && 0 && f_g\frac{v}{\sqrt{2}}h \\ \hline -\frac{d}{dr} + \frac{h-1}{r} && 0 && -f_g\frac{v}{\sqrt{2}}h && 0 \\ \hline 0 && -f_g\frac{v}{\sqrt{2}}h && 0 && -\frac{d}{dr} - \frac{2}{r} \\ \hline f_g \frac{v}{\sqrt{2}}h && 0 && \frac{d}{dr} && 0 \end{array} \end{bmatrix} \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} = ε \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} $$

\$\frac{d^2}{dr^2} k(r) + \frac{2}{r} \frac{d}{dr} k(r) = \frac{2}{r^2}K^2(r)k(r) -4 v^2λ(1-k^2(r))k(r)\$

\$k(0) = 0; K(0) = 1; k(∞) = 1; K(∞) = 0\$

\$\frac{d}{dr}F_L(r) + \frac{1+K(r)}{r} F_L(r) +f_g\frac{v}{\sqrt{2}} k(r)F_R(r) = ε G_L(r)\$

\$\frac{d}{dr}G_L(r) + \frac{1-k(r)}{r} G_L(r) +f_g\frac{v}{\sqrt{2}} k(r)G_R(r) = -ε F_L(r)\$

\$\frac{d}{dr}F_(r) + \frac{2}{r} F_R(r) +f_g\frac{v}{\sqrt{2}} k(r)F_L(r) = -ε G_R(r)\$

\$\frac{d}{dr}G_R(r) + f_g\frac{v}{\sqrt{2}} k(r)G_L(r) = ε F_R(r)\$

In the first set of equations, \$r\$ is a variable, \$K(r)\$ and \$k(r)\$, are functions of \$r\$ and \$v\$, \$g\$ and \$λ\$ are parameters. After solving the first set, I want to put \$K(r)\$ and \$k(r)\$ in the second set which is an eigensystem with the eigenvalue \$ε\$, where \$f_g\$ is a parameter.

$$\begin{bmatrix} \begin{array}{cc|cc|cc|cc} 0 && \frac{d}{dr} + \frac{1 + k}{r} && 0 && f_g\frac{v}{\sqrt{2}}k \\ \hline -\frac{d}{dr} + \frac{k-1}{r} && 0 && -f_g\frac{v}{\sqrt{2}}k && 0 \\ \hline 0 && -f_g\frac{v}{\sqrt{2}}k && 0 && -\frac{d}{dr} - \frac{2}{r} \\ \hline f_g \frac{v}{\sqrt{2}}k && 0 && \frac{d}{dr} && 0 \end{array} \end{bmatrix} \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} = ε \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} $$

\$\frac{d^2}{dr^2} h(r) + \frac{2}{r} \frac{d}{dr} h(r) = \frac{2}{r^2}K^2(r)h(r) -4 v^2λ(1-h^2(r))k(r)\$

\$h(0) = 0; K(0) = 1; h(∞) = 1; K(∞) = 0\$

\$\frac{d}{dr}F_L(r) + \frac{1+K(r)}{r} F_L(r) +f_g\frac{v}{\sqrt{2}} h(r)F_R(r) = ε G_L(r)\$

\$\frac{d}{dr}G_L(r) + \frac{1-h(r)}{r} G_L(r) +f_g\frac{v}{\sqrt{2}} h(r)G_R(r) = -ε F_L(r)\$

\$\frac{d}{dr}F_(r) + \frac{2}{r} F_R(r) +f_g\frac{v}{\sqrt{2}} h(r)F_L(r) = -ε G_R(r)\$

\$\frac{d}{dr}G_R(r) + f_g\frac{v}{\sqrt{2}} h(r)G_L(r) = ε F_R(r)\$

In the first set of equations, \$r\$ is a variable, \$K(r)\$ and \$h(r)\$, are functions of \$r\$ and \$v\$, \$g\$ and \$λ\$ are parameters. After solving the first set, I want to put \$K(r)\$ and \$h(r)\$ in the second set which is an eigensystem with the eigenvalue \$ε\$, where \$f_g\$ is a parameter.

$$\begin{bmatrix} \begin{array}{cc|cc|cc|cc} 0 && \frac{d}{dr} + \frac{1 + h}{r} && 0 && f_g\frac{v}{\sqrt{2}}h \\ \hline -\frac{d}{dr} + \frac{h-1}{r} && 0 && -f_g\frac{v}{\sqrt{2}}h && 0 \\ \hline 0 && -f_g\frac{v}{\sqrt{2}}h && 0 && -\frac{d}{dr} - \frac{2}{r} \\ \hline f_g \frac{v}{\sqrt{2}}h && 0 && \frac{d}{dr} && 0 \end{array} \end{bmatrix} \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} = ε \begin{bmatrix}G_L \\\ F_L \\\ G_R \\\ F_R\end{bmatrix} $$

Became Hot Network Question
correct operator
Source Link
Loading
add lines between rows and columns in matrix
Source Link
Loading
convert images to text for screen readers
Source Link
Loading
edited tags
Link
toolic
  • 16.4k
  • 6
  • 29
  • 221
Loading
Source Link
Loading