Published online by Cambridge University Press: 09 March 2007
The mineral content of legumes is generally high, but the bioavailability is poor due to the presence of phytate, which is a main inhibitor of Fe and Zn absorption. Some legumes also contain considerable amounts of Fe-binding polyphenols inhibiting Fe absorption. Furthermore, soya protein per se has an inhibiting effect on Fe absorption. Efficient removal of phytate, and probably also polyphenols, can be obtained by enzymatic degradation during food processing, either by increasing the activity of the naturally occurring plant phytases and polyphenol degrading enzymes, or by addition of enzyme preparations. Biological food processing techniques that increase the activity of the native enzymes are soaking, germination, hydrothermal treatment and fermentation. Food processing can be optimized towards highest phytate degradation provided that the optimal conditions for phytase activity in the plant is known. In contrast to cereals, some legumes have highest phytate degradation at neutral or alkaline pH. Addition of microbial enzyme preparations seems to be the most efficient for complete degradation during processing. Fe and Zn absorption have been shown to be low from legume-based diets. It has also been demonstrated that nutritional Fe deficiency reaches its greatest prevalence in populations subsisting on cereal- and legume-based diets. However, in a balanced diet containing animal protein a high intake of legumes is not considered a risk in terms of mineral supply. Furthermore, once phytate, and in certain legumes polyphenols, is degraded, legumes would become good sources of Fe and Zn as the content of these minerals is high.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.