-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathtranscribe_batch_multiple_files_v2.py
102 lines (83 loc) · 3.64 KB
/
transcribe_batch_multiple_files_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START speech_transcribe_batch_multiple_files_v2]
import os
import re
from typing import List
from google.cloud import storage
from google.cloud.speech_v2 import SpeechClient
from google.cloud.speech_v2.types import cloud_speech
PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
def transcribe_batch_multiple_files_v2(
audio_uris: List[str],
gcs_output_path: str,
) -> cloud_speech.BatchRecognizeResponse:
"""Transcribes audio from multiple Google Cloud Storage URIs using the Google Cloud Speech-to-Text API.
The transcription results are stored in another Google Cloud Storage bucket.
Args:
audio_uris (List[str]): The list of Google Cloud Storage URIs of the input audio files.
E.g., ["gs://[BUCKET]/[FILE]", "gs://[BUCKET]/[FILE]"]
gcs_output_path (str): The Google Cloud Storage bucket URI where the output transcript will be stored.
E.g., gs://[BUCKET]
Returns:
cloud_speech.BatchRecognizeResponse: The response containing the URIs of the transcription results.
"""
# Instantiates a client
client = SpeechClient()
config = cloud_speech.RecognitionConfig(
auto_decoding_config=cloud_speech.AutoDetectDecodingConfig(),
language_codes=["en-US"],
model="long",
)
files = [cloud_speech.BatchRecognizeFileMetadata(uri=uri) for uri in audio_uris]
request = cloud_speech.BatchRecognizeRequest(
recognizer=f"projects/{PROJECT_ID}/locations/global/recognizers/_",
config=config,
files=files,
recognition_output_config=cloud_speech.RecognitionOutputConfig(
gcs_output_config=cloud_speech.GcsOutputConfig(
uri=gcs_output_path,
),
),
)
# Transcribes the audio into text
operation = client.batch_recognize(request=request)
print("Waiting for operation to complete...")
response = operation.result(timeout=120)
print("Operation finished. Fetching results from:")
for uri in audio_uris:
file_results = response.results[uri]
print(f" {file_results.uri}...")
output_bucket, output_object = re.match(
r"gs://([^/]+)/(.*)", file_results.uri
).group(1, 2)
# Instantiates a Cloud Storage client
storage_client = storage.Client()
# Fetch results from Cloud Storage
bucket = storage_client.bucket(output_bucket)
blob = bucket.blob(output_object)
results_bytes = blob.download_as_bytes()
batch_recognize_results = cloud_speech.BatchRecognizeResults.from_json(
results_bytes, ignore_unknown_fields=True
)
for result in batch_recognize_results.results:
print(f" Transcript: {result.alternatives[0].transcript}")
return response
# [END speech_transcribe_batch_multiple_files_v2]
if __name__ == "__main__":
audio1 = "gs://cloud-samples-data/speech/audio.flac"
audio2 = "gs://cloud-samples-data/speech/corbeau_renard.flac"
uris_list = [audio1, audio2]
output_bucket_name = "gs://your-bucket-name"
transcribe_batch_multiple_files_v2(uris_list, output_bucket_name)