-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathtranscribe_enhanced_model.py
61 lines (49 loc) · 2.06 KB
/
transcribe_enhanced_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Google Cloud Speech API sample that demonstrates enhanced models
and recognition metadata.
"""
# [START speech_transcribe_enhanced_model]
from google.cloud import speech
def transcribe_file_with_enhanced_model(audio_file: str) -> speech.RecognizeResponse:
"""Transcribe the given audio file using an enhanced model.
Args:
audio_file (str): Path to the local audio file to be transcribed.
Example: "resources/commercial_mono.wav"
Returns:
speech.RecognizeResponse: The response containing the transcription results.
"""
client = speech.SpeechClient()
# audio_file = 'resources/commercial_mono.wav'
with open(audio_file, "rb") as f:
audio_content = f.read()
audio = speech.RecognitionAudio(content=audio_content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=8000,
language_code="en-US",
use_enhanced=True,
# A model must be specified to use enhanced model.
model="phone_call",
)
response = client.recognize(config=config, audio=audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print("-" * 20)
print(f"First alternative of result {i}")
print(f"Transcript: {alternative.transcript}")
return response
# [END speech_transcribe_enhanced_model]
if __name__ == "__main__":
transcribe_file_with_enhanced_model("resources/commercial_mono.wav")