-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathtranscribe_model_selection.py
92 lines (73 loc) · 3.11 KB
/
transcribe_model_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright 2017 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Google Cloud Speech API sample that demonstrates how to select the model
used for speech recognition.
"""
from google.cloud import speech
def transcribe_model_selection() -> speech.RecognizeResponse:
"""Transcribe the given audio file synchronously with the selected model.
List of possible models: https://cloud.google.com/speech-to-text/docs/transcription-model
Returns:
The response containing the transcription results.
"""
# [START speech_transcribe_model_selection]
from google.cloud import speech
# Instantiates a client
client = speech.SpeechClient()
# Reads a file as bytes
with open("resources/Google_Gnome.wav", "rb") as f:
audio_content = f.read()
audio = speech.RecognitionAudio(content=audio_content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code="en-US",
model="video", # Chosen model
)
response = client.recognize(config=config, audio=audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print("-" * 20)
print(f"First alternative of result {i}")
print(f"Transcript: {alternative.transcript}")
# [END speech_transcribe_model_selection]
return response
def transcribe_model_selection_gcs() -> speech.RecognizeResponse:
"""Transcribe the given audio file synchronously with the selected model.
List of possible models: https://cloud.google.com/speech-to-text/docs/transcription-model
Returns:
speech.RecognizeResponse: The response containing the transcription results.
"""
# [START speech_transcribe_model_selection_gcs]
from google.cloud import speech
client = speech.SpeechClient()
audio = speech.RecognitionAudio(
uri="gs://cloud-samples-tests/speech/Google_Gnome.wav"
)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code="en-US",
model="video", # Chosen model
)
operation = client.long_running_recognize(config=config, audio=audio)
print("Waiting for operation to complete...")
response = operation.result(timeout=90)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print("-" * 20)
print(f"First alternative of result {i}")
print(f"Transcript: {alternative.transcript}")
# [END speech_transcribe_model_selection_gcs]
return response