-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathtranscribe_streaming_voice_activity_timeouts.py
131 lines (112 loc) · 4.77 KB
/
transcribe_streaming_voice_activity_timeouts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START speech_transcribe_streaming_voice_activity_timeouts]
import os
from time import sleep
from google.cloud.speech_v2 import SpeechClient
from google.cloud.speech_v2.types import cloud_speech
from google.protobuf import duration_pb2 # type: ignore
PROJECT_ID = os.getenv("GOOGLE_CLOUD_PROJECT")
def transcribe_streaming_voice_activity_timeouts(
speech_start_timeout: int,
speech_end_timeout: int,
audio_file: str,
) -> cloud_speech.StreamingRecognizeResponse:
"""Transcribes audio from audio file to text.
Args:
speech_start_timeout: The timeout in seconds for speech start.
speech_end_timeout: The timeout in seconds for speech end.
audio_file: Path to the local audio file to be transcribed.
Example: "resources/audio_silence_padding.wav"
Returns:
The streaming response containing the transcript.
"""
# Instantiates a client
client = SpeechClient()
# Reads a file as bytes
with open(audio_file, "rb") as file:
audio_content = file.read()
# In practice, stream should be a generator yielding chunks of audio data
chunk_length = len(audio_content) // 20
stream = [
audio_content[start : start + chunk_length]
for start in range(0, len(audio_content), chunk_length)
]
audio_requests = (
cloud_speech.StreamingRecognizeRequest(audio=audio) for audio in stream
)
recognition_config = cloud_speech.RecognitionConfig(
auto_decoding_config=cloud_speech.AutoDetectDecodingConfig(),
language_codes=["en-US"],
model="long",
)
# Sets the flag to enable voice activity events and timeout
speech_start_timeout = duration_pb2.Duration(seconds=speech_start_timeout)
speech_end_timeout = duration_pb2.Duration(seconds=speech_end_timeout)
voice_activity_timeout = (
cloud_speech.StreamingRecognitionFeatures.VoiceActivityTimeout(
speech_start_timeout=speech_start_timeout,
speech_end_timeout=speech_end_timeout,
)
)
streaming_features = cloud_speech.StreamingRecognitionFeatures(
enable_voice_activity_events=True, voice_activity_timeout=voice_activity_timeout
)
streaming_config = cloud_speech.StreamingRecognitionConfig(
config=recognition_config, streaming_features=streaming_features
)
config_request = cloud_speech.StreamingRecognizeRequest(
recognizer=f"projects/{PROJECT_ID}/locations/global/recognizers/_",
streaming_config=streaming_config,
)
def requests(config: cloud_speech.RecognitionConfig, audio: list) -> list:
yield config
for message in audio:
sleep(0.5)
yield message
# Transcribes the audio into text
responses_iterator = client.streaming_recognize(
requests=requests(config_request, audio_requests)
)
responses = []
for response in responses_iterator:
responses.append(response)
if (
response.speech_event_type
== cloud_speech.StreamingRecognizeResponse.SpeechEventType.SPEECH_ACTIVITY_BEGIN
):
print("Speech started.")
if (
response.speech_event_type
== cloud_speech.StreamingRecognizeResponse.SpeechEventType.SPEECH_ACTIVITY_END
):
print("Speech ended.")
for result in response.results:
print(f"Transcript: {result.alternatives[0].transcript}")
return responses
# [END speech_transcribe_streaming_voice_activity_timeouts]
if __name__ == "__main__":
# Define the timeout duration for detecting the start of speech
# In this case this means the function will wait for up to 5 seconds to determine if speech has started
# before it begins processing the audio stream.
speech_start_timeout = 5
# Define the timeout duration for detecting the end of speech
# This indicates that the function will continue to listen for up to 1 second
# after the last detected speech segment to determine if speech has ended.
speech_end_timeout = 1
transcribe_streaming_voice_activity_timeouts(
speech_start_timeout=speech_start_timeout,
speech_end_timeout=speech_end_timeout,
audio_file="resources/audio_silence_padding.wav",
)