-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy path__init__.py
603 lines (539 loc) · 24.2 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
import logging
import warnings
from typing import Callable, Dict, List, Optional, Tuple
import torch
from torch.optim import SGD as CPUSGD
from torch.optim import AdamW as CPUAdam
try:
from transformer_engine.pytorch.optimizers import FusedAdam as Adam
from transformer_engine.pytorch.optimizers import FusedSGD as SGD
except ImportError:
try:
from apex.optimizers import FusedAdam as Adam
from apex.optimizers import FusedSGD as SGD
except ImportError:
warnings.warn(
f'Transformer Engine and Apex are not installed. Falling back to Torch optimizers.'
)
# Apex's FusedAdam is a drop-in replacement for torch's AdamW.
# pylint: disable-next=line-too-long.
# See https://github.com/NVIDIA/apex/blob/7b73b12361068a10b0f44844534613f252a5ea75/apex/optimizers/fused_adam.py#L16.
from torch.optim import AdamW as Adam, SGD
from megatron.core import mpu
from megatron.core.optimizer.cpu_offloading.hybrid_optimizer import HybridDeviceOptimizer
from ..distributed.param_and_grad_buffer import _ParamAndGradBuffer
from ..transformer.module import MegatronModule
from ..utils import is_te_min_version, log_single_rank
from .distrib_optimizer import DistributedOptimizer
from .grad_scaler import ConstantGradScaler, DynamicGradScaler
from .optimizer import (
ChainedOptimizer,
Float16OptimizerWithFloat16Params,
FP32Optimizer,
MegatronOptimizer,
)
from .optimizer_config import OptimizerConfig
logger = logging.getLogger(__name__)
def _get_param_groups(
model_chunks: List[MegatronModule],
no_weight_decay_cond: Optional[Callable],
scale_lr_cond: Optional[Callable],
lr_mult: float,
lr: float,
min_lr: float,
decoupled_lr: Optional[float],
decoupled_min_lr: Optional[float],
) -> List[Dict]:
"""Create parameter groups for optimizer.
Creates parameter groups based on weight decay condition (regularized vs
non regularized), learning rate scale condition (lr vs lr_mult * lr),
and whether it is expert parameters. scale_lr_cond is used during finetuning
where head of the network requires a scaled version of the base learning rate.
Args:
model_chunks (List[MegatronModule]): model chunks to create parameter
groups for.
no_weight_decay_cond (func, optional): function to determine whether a
parameter should not perform weight decay.
scale_lr_cond (func, optional): function to determine whether a parameter
should have a scaled learning rate.
lr_mult (float): learning rate multiplier for parameters that
satisfy scale_lr_cond.
lr (float): learning rate.
min_lr (float): minimum learning rate.
decoupled_lr (Optional[float]): optional decoupled learning rate.
decoupled_min_lr (Optional[float]): optional decoupled minimum learning rate.
Returns:
List of parameter groups.
"""
use_decoupled_learning_rate = decoupled_lr is not None
# Map (wd_mult, lr_mult, is_expert_parallel, is_decoupled_lr) to params.
params_map = {}
for model_chunk in model_chunks:
ddp_config = model_chunk.ddp_config
if ddp_config.use_custom_fsdp:
named_parameters = model_chunk.optimizer_named_parameters()
else:
named_parameters = model_chunk.named_parameters()
for name, param in named_parameters:
if (
ddp_config.use_custom_fsdp
and ddp_config.data_parallel_sharding_strategy == "optim_grads_params"
):
param_shard = param
param = param.orig_param
if not param.requires_grad:
continue
is_expert_parallel = not getattr(param, 'allreduce', True)
if no_weight_decay_cond is not None:
no_wd = no_weight_decay_cond(name, param)
else:
# Do not regularize biases and norm parameters.
no_wd = name.endswith(".bias") or len(param.shape) == 1
if scale_lr_cond is not None:
scale_lr = scale_lr_cond(name, param)
else:
scale_lr = False
if not no_wd and not scale_lr:
wd_mult, _lr_mult = 1.0, 1.0
elif not no_wd and scale_lr:
wd_mult, _lr_mult = 1.0, lr_mult
elif no_wd and not scale_lr:
wd_mult, _lr_mult = 0.0, 1.0
else:
wd_mult, _lr_mult = 0.0, lr_mult
is_decoupled_lr = False
# For input/embedding and output layer: embedding.word_embeddings.weight /
# output_layer.weight.
if use_decoupled_learning_rate and getattr(
param, 'is_embedding_or_output_parameter', False
):
is_decoupled_lr = True
key = (wd_mult, _lr_mult, is_expert_parallel, is_decoupled_lr)
if key not in params_map:
params_map[key] = []
if (
ddp_config.use_custom_fsdp
and ddp_config.data_parallel_sharding_strategy == "optim_grads_params"
):
params_map[key].append(param_shard)
else:
params_map[key].append(param)
param_groups = []
for (wd_mult, _lr_mult, is_expert_parallel, is_decoupled_lr), params in params_map.items():
assert len(params) > 0
param_group = {
'params': params,
'wd_mult': wd_mult,
'lr_mult': _lr_mult,
'is_expert_parallel': is_expert_parallel,
'is_decoupled_lr': is_decoupled_lr,
}
param_groups.append(param_group)
param_groups = _update_min_and_max_lr_in_param_groups(
param_groups,
lr=lr,
min_lr=min_lr,
decoupled_lr=decoupled_lr,
decoupled_min_lr=decoupled_min_lr,
)
return param_groups
def _update_min_and_max_lr_in_param_groups(
param_groups: List[Dict],
lr: float,
min_lr: float,
decoupled_lr: Optional[float],
decoupled_min_lr: Optional[float],
) -> List[Dict]:
"""
Updates `max_lr` and `min_lr` values in each parameter group, and returns new list.
By default, each group will use `lr` / `min_lr` as `max_lr` / `min_lr`.
If `decoupled_lr` is provided, then `decoupled_lr` / `decoupled_min_lr` will be used
as `max_lr` / `min_lr` for the input and output layer.
Args:
param_groups (List): parameter groups whose 'max_lr' and `min_lr` fields need to
be adjusted.
lr (float): learning rate.
min_lr (float): minimum learning rate.
decoupled_lr (Optional[float]): optional decoupled learning rate.
decoupled_min_lr (Optional[float]): optional decoupled minimum learning rate.
Returns:
List of adjusted parameter groups.
"""
if decoupled_min_lr is None:
decoupled_min_lr = min_lr
for param_group in param_groups:
if param_group['is_decoupled_lr']:
assert decoupled_lr is not None
param_group['max_lr'] = decoupled_lr
param_group['min_lr'] = decoupled_min_lr
else:
param_group['max_lr'] = lr
param_group['min_lr'] = min_lr
return param_groups
def _get_param_groups_and_buffers(
model_chunks: List[MegatronModule],
model_chunk_offset: int,
config: OptimizerConfig,
no_weight_decay_cond: Optional[Callable],
scale_lr_cond: Optional[Callable],
lr_mult: float,
filter_fn: Callable,
buffer_name: str,
) -> Tuple[List[Dict], Dict[int, List[_ParamAndGradBuffer]]]:
"""Returns parameter groups and buffer for optimizer.
Args:
model_chunks (List[MegatronModule]): model chunks to create parameter
groups for.
model_chunk_offset (int): offset of model_chunks in global model_chunks list.
config (OptimizerConfig): optimizer configuration object.
no_weight_decay_cond (func, optional): function to determine whether a
parameter should not perform weight decay.
scale_lr_cond (func, optional): function to determine whether a parameter
should have a scaled learning rate.
lr_mult (float): learning rate multiplier for parameters that
satisfy scale_lr_cond.
lr (float): learning rate.
min_lr (float): minimum learning rate.
filter_fn (callable): filtering function for param_groups.
buffer_name (str): name of buffer.
Returns:
List of parameter groups and dictionary of model chunk IDs to buffers.
"""
param_groups = _get_param_groups(
model_chunks,
no_weight_decay_cond,
scale_lr_cond,
lr_mult,
lr=config.lr,
min_lr=config.min_lr,
decoupled_lr=config.decoupled_lr,
decoupled_min_lr=config.decoupled_min_lr,
)
param_groups = list(filter(filter_fn, param_groups))
buffers = {}
for model_chunk_idx, model_chunk in enumerate(model_chunks):
if hasattr(model_chunk, buffer_name):
buffers[model_chunk_idx + model_chunk_offset] = getattr(model_chunk, buffer_name)
return param_groups, buffers
def _get_megatron_optimizer_based_on_param_groups(
config: OptimizerConfig,
model_chunks: List[MegatronModule],
param_groups: List,
per_model_buffers: Optional[Dict[int, List[_ParamAndGradBuffer]]] = None,
model_parallel_group: Optional[torch.distributed.ProcessGroup] = None,
data_parallel_group: Optional[torch.distributed.ProcessGroup] = None,
data_parallel_group_gloo: Optional[torch.distributed.ProcessGroup] = None,
data_parallel_group_idx: Optional[int] = None,
distributed_optimizer_instance_id: Optional[int] = 0,
) -> MegatronOptimizer:
"""Get Megatron optimizer based on parameter groups.
Args:
config (OptimizerConfig): optimizer configuration object.
model_chunks (list): list of model chunks.
param_groups (list): list of parameter groups.
per_model_buffers (dict, optional): buffers for distributed optimizer. Defaults to None.
data_parallel_group (torch.distributed.ProcessGroup, optional): data-parallel group for
distributed optimizer. Defaults to None.
data_parallel_group_gloo (torch.distributed.ProcessGroup, optional): gloo data-parallel
group for distributed optimizer. Defaults to None.
data_parallel_group_idx (int, optional): data-parallel group index for distributed
optimizer. Defaults to None.
distributed_optimizer_instance_id (int, optional): Distributed optimizer instance. Defaults
0.
Returns:
Instance of MegatronOptimizer.
"""
# when freezing sub-models we may have no trainable parameters on a rank and
# hence an empty param_groups. However, we still need to create an optimizer
# for the purposes of grad stats reductions
if param_groups:
if config.optimizer_cpu_offload:
if torch.__version__ < '2.3.0':
warnings.warn(
"CPU offload is recommended for PyTorch >= 2.3.0, "
"untested versions below this may have convergence issues."
)
gpu_optimizer_cls = Adam if config.optimizer == 'adam' else SGD
cpu_optimizer_cls = CPUAdam if config.optimizer == 'adam' else CPUSGD
if config.use_torch_optimizer_for_cpu_offload:
gpu_optimizer_cls = cpu_optimizer_cls
if config.optimizer == 'adam':
gpu_optimizer_cls = Adam
cpu_optimizer_cls = CPUAdam
optimizer_defaults = dict(
lr=config.lr,
weight_decay=config.weight_decay,
betas=(config.adam_beta1, config.adam_beta2),
eps=config.adam_eps,
bias_correction=True,
fused=True, # this flag is used to improve the performance of the cpu optimizer
)
else:
gpu_optimizer_cls = SGD
cpu_optimizer_cls = CPUSGD
optimizer_defaults = dict(
lr=config.lr, weight_decay=config.weight_decay, momentum=config.sgd_momentum
)
optimizer = HybridDeviceOptimizer(
param_groups,
offload_fraction=config.optimizer_offload_fraction,
cpu_optimizer_cls=cpu_optimizer_cls,
gpu_optimizer_cls=gpu_optimizer_cls,
overlap_cpu_optimizer_d2h_h2d=config.overlap_cpu_optimizer_d2h_h2d,
pin_cpu_grads=config.pin_cpu_grads,
pin_cpu_params=config.pin_cpu_params,
param_update_in_fp32=True,
**optimizer_defaults,
)
init_state_fn = None
elif config.optimizer == 'adam':
kwargs = {
"params": param_groups,
"lr": config.lr,
"weight_decay": config.weight_decay,
"betas": (config.adam_beta1, config.adam_beta2),
"eps": config.adam_eps,
}
if config.use_precision_aware_optimizer:
kwargs.update(
{
"master_weights": True,
"use_decoupled_grad": True,
"master_weight_dtype": config.main_params_dtype,
"exp_avg_dtype": config.exp_avg_dtype,
"exp_avg_sq_dtype": config.exp_avg_sq_dtype,
"store_param_remainders": config.store_param_remainders,
}
)
optimizer = Adam(**kwargs)
def init_state_fn(opt, config=None):
for group in opt.param_groups:
for p in group['params']:
if len(opt.state[p]) == 0:
if config is None or not config.use_precision_aware_optimizer:
opt.state[p]['exp_avg'] = torch.zeros_like(p.data)
opt.state[p]['exp_avg_sq'] = torch.zeros_like(p.data)
else:
opt.initialize_state(p)
elif config.optimizer == 'sgd':
optimizer = SGD(
param_groups,
lr=config.lr,
weight_decay=config.weight_decay,
momentum=config.sgd_momentum,
)
init_state_fn = None
else:
raise Exception('{} optimizer is not supported.'.format(config.optimizer))
else:
optimizer = None
init_state_fn = None
# Mixed precision optimizer.
# - Note: both the Float16Optimizer and the DistributedOptimizer inherit
# from the MixedPrecisionOptimizer, which manages any optimizer where
# the model params and main params are distinct.
if config.fp16 or config.bf16 or config.use_distributed_optimizer:
# Grad scaler:
# if loss-scale is provided, instantiate the constant scaler.
# if we are using fp16 and loss-scale is not present, use a
# dynamic scaler.
# otherwise we are running in bf16 with no loss-scale so
# leave it as None.
grad_scaler = None
# Constant loss scale.
if config.loss_scale:
grad_scaler = ConstantGradScaler(config.loss_scale)
# Dynamic loss scale.
else:
if config.fp16:
grad_scaler = DynamicGradScaler(
initial_scale=config.initial_loss_scale,
min_scale=config.min_loss_scale,
growth_factor=2.0,
backoff_factor=0.5,
growth_interval=config.loss_scale_window,
hysteresis=config.hysteresis,
)
optimizer_args = [optimizer, config, grad_scaler, init_state_fn]
if config.use_distributed_optimizer:
optimizer = DistributedOptimizer(
*optimizer_args,
model_chunks=model_chunks,
per_model_buffers=per_model_buffers,
data_parallel_group=data_parallel_group,
data_parallel_group_gloo=data_parallel_group_gloo,
data_parallel_group_idx=data_parallel_group_idx,
distributed_optimizer_instance_id=distributed_optimizer_instance_id,
)
# This is needed for case where num_distributed_optimizer_instances > 1. In this case,
# weight gradients are all-reduced across optimizer instances, so each instance has
# the duplicated weight gradients, need to reduce gradient stats inside each instance.
setattr(
optimizer,
'grad_stats_parallel_group',
mpu.get_intra_distributed_optimizer_instance_group(),
)
else:
optimizer = Float16OptimizerWithFloat16Params(*optimizer_args)
setattr(optimizer, 'grad_stats_parallel_group', model_parallel_group)
else:
# FP32 optimizer.
optimizer = FP32Optimizer(optimizer, config, init_state_fn)
setattr(optimizer, 'grad_stats_parallel_group', model_parallel_group)
return optimizer
def get_megatron_optimizer(
config: OptimizerConfig,
model_chunks: List[MegatronModule],
no_weight_decay_cond: Optional[Callable] = None,
scale_lr_cond: Optional[Callable] = None,
lr_mult: float = 1.0,
use_gloo_process_groups: bool = True,
) -> MegatronOptimizer:
"""Retrieve the Megatron optimizer for model chunks.
We use separate optimizers for expert parameters and non-expert parameters.
Args:
config (OptimizerConfig): optimizer configuration object.
model_chunks (List[MegatronModule]): model chunks to get optimizer for.
no_weight_decay_cond (func, optional): function to determine whether a parameter
should not perform weight decay. Defaults to None.
scale_lr_cond (func, optional): function to determine whether a parameter
should have a scaled learning rate. Defaults to None.
lr_mult (float, optional): learning rate multiplier for parameters that
satisfy scale_lr_cond. Defaults to 1.0.
use_gloo_process_groups (bool): if false, disable use of Gloo process groups
in underlying Megatron optimizers.
Returns:
Instance of MegatronOptimizer.
"""
log_single_rank(logger, logging.INFO, f'Setting up optimizer with config {config}')
# Separate out first model chunk if overlapping param AG with optimizer step.
if config.overlap_param_gather_with_optimizer_step:
all_dense_model_chunks = [[model_chunks[0]], model_chunks[1:]]
overlap_param_gather_with_optimizer_step_flags = [True, False]
else:
all_dense_model_chunks = [model_chunks]
overlap_param_gather_with_optimizer_step_flags = [False]
model_parallel_rank = torch.distributed.get_rank(mpu.get_model_parallel_group())
if torch.distributed.get_world_size(
mpu.get_data_parallel_group(with_context_parallel=True, partial_data_parallel=False)
) > torch.distributed.get_world_size(
mpu.get_data_parallel_group(with_context_parallel=True, partial_data_parallel=True)
):
distributed_optimizer_instance_id = torch.distributed.get_rank(
mpu.get_inter_distributed_optimizer_instance_group()
)
else:
distributed_optimizer_instance_id = 0
optimizers = []
model_chunk_offset = 0
ddp_config = model_chunks[0].ddp_config # Use the first model chunk's DDP config
if ddp_config.use_custom_fsdp:
for model_chunk, overlap_param_gather_with_optimizer_step in zip(
all_dense_model_chunks, overlap_param_gather_with_optimizer_step_flags
):
param_groups, buffers = _get_param_groups_and_buffers(
model_chunk,
model_chunk_offset=model_chunk_offset,
config=config,
no_weight_decay_cond=no_weight_decay_cond,
scale_lr_cond=scale_lr_cond,
lr_mult=lr_mult,
filter_fn=lambda g: True,
buffer_name='buffers',
)
optimizers.append(
_get_megatron_optimizer_based_on_param_groups(
config,
model_chunks=model_chunk,
param_groups=param_groups,
per_model_buffers=buffers,
model_parallel_group=mpu.get_model_parallel_group(),
data_parallel_group=mpu.get_data_parallel_group(with_context_parallel=True),
data_parallel_group_gloo=mpu.get_data_parallel_group_gloo(
with_context_parallel=True
),
data_parallel_group_idx=model_parallel_rank,
)
)
model_chunk_offset += 1
if len(optimizers) == 1:
return optimizers[0]
return ChainedOptimizer(optimizers)
for dense_model_chunks, overlap_param_gather_with_optimizer_step in zip(
all_dense_model_chunks, overlap_param_gather_with_optimizer_step_flags
):
param_groups, buffers = _get_param_groups_and_buffers(
dense_model_chunks,
model_chunk_offset=model_chunk_offset,
config=config,
no_weight_decay_cond=no_weight_decay_cond,
scale_lr_cond=scale_lr_cond,
lr_mult=lr_mult,
filter_fn=lambda g: not g['is_expert_parallel'],
buffer_name='buffers',
)
for model_chunk in dense_model_chunks:
model_chunk.overlap_param_gather_with_optimizer_step = (
overlap_param_gather_with_optimizer_step
)
# Pass Gloo process groups into optimizer only if needed.
if use_gloo_process_groups:
data_parallel_group_gloo = mpu.get_data_parallel_group_gloo(
with_context_parallel=True, partial_data_parallel=True
)
else:
data_parallel_group_gloo = None
optimizers.append(
_get_megatron_optimizer_based_on_param_groups(
config,
model_chunks=dense_model_chunks,
param_groups=param_groups,
per_model_buffers=buffers,
model_parallel_group=mpu.get_model_parallel_group(),
data_parallel_group=mpu.get_data_parallel_group(
with_context_parallel=True, partial_data_parallel=True
),
data_parallel_group_gloo=data_parallel_group_gloo,
data_parallel_group_idx=model_parallel_rank,
distributed_optimizer_instance_id=distributed_optimizer_instance_id,
)
)
model_chunk_offset += 1
moe_param_groups, moe_buffers = _get_param_groups_and_buffers(
model_chunks,
model_chunk_offset=0,
config=config,
no_weight_decay_cond=no_weight_decay_cond,
scale_lr_cond=scale_lr_cond,
lr_mult=lr_mult,
filter_fn=lambda g: g['is_expert_parallel'],
buffer_name='expert_parallel_buffers',
)
if len(moe_param_groups) > 0:
model_parallel_rank = torch.distributed.get_rank(
mpu.get_expert_tensor_model_pipeline_parallel_group()
)
# Pass Gloo process groups into optimizer only if needed.
if use_gloo_process_groups:
data_parallel_group_gloo = mpu.get_expert_data_parallel_group_gloo(
partial_expert_data_parallel=True
)
else:
data_parallel_group_gloo = None
optimizers.append(
_get_megatron_optimizer_based_on_param_groups(
config,
model_chunks=model_chunks,
param_groups=moe_param_groups,
per_model_buffers=moe_buffers,
model_parallel_group=mpu.get_expert_tensor_model_pipeline_parallel_group(),
data_parallel_group=mpu.get_expert_data_parallel_group(
partial_expert_data_parallel=True
),
data_parallel_group_gloo=data_parallel_group_gloo,
data_parallel_group_idx=model_parallel_rank,
distributed_optimizer_instance_id=distributed_optimizer_instance_id,
)
)
return ChainedOptimizer(optimizers)