-
Notifications
You must be signed in to change notification settings - Fork 2.7k
/
Copy pathprocess_groups_config.py
178 lines (136 loc) · 6.64 KB
/
process_groups_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
"""Dataclasses for organizing model parallelism and gradient communication process groups."""
from dataclasses import dataclass, field, fields
from typing import List, Optional
import torch
from megatron.core import parallel_state
@dataclass
class ModelCommProcessGroups:
"""Process groups for transformer model parallelism.
Fields use init=False and must be set after instance creation.
Args:
tp: Tensor parallel process group
pp: Pipeline parallel process group
mp: Model parallel group (tensor + pipeline)
embd: Embedding process group
pos_embd: Position embedding process group
cp: Context parallel process group
tp_cp: Tensor and context parallel group
hcp: Hierarchical context parallel groups
ep: Expert model parallel group
expt_tp: Expert tensor parallel group
tp_ep: Tensor and expert parallel group
tp_ep_pp: Tensor, expert, and pipeline parallel group
expt_dp: Expert data parallel group
Example:
# Create instance and set needed process groups
model_pgs = ModelCommProcessGroups()
model_pgs.tp = tp_group
model_pgs.pp = pp_group
# Pass to model components
model = TransformerModel(..., process_groups=model_pgs)
"""
# _TENSOR_MODEL_PARALLEL_GROUP
tp: torch.distributed.ProcessGroup = field(init=False)
# _PIPELINE_MODEL_PARALLEL_GROUP
pp: torch.distributed.ProcessGroup = field(init=False)
# _MODEL_PARALLEL_GROUP
mp: torch.distributed.ProcessGroup = field(init=False)
# _EMBEDDING_GROUP
embd: torch.distributed.ProcessGroup = field(init=False)
# _POSITION_EMBEDDING_GROUP
pos_embd: torch.distributed.ProcessGroup = field(init=False)
# _CONTEXT_PARALLEL_GROUP
cp: torch.distributed.ProcessGroup = field(init=False)
# _TENSOR_AND_CONTEXT_PARALLEL_GROUP
tp_cp: torch.distributed.ProcessGroup = field(init=False)
# _HIERARCHICAL_CONTEXT_PARALLEL_GROUPS
hcp: List[torch.distributed.ProcessGroup] = field(init=False)
# _EXPERT_MODEL_PARALLEL_GROUP
ep: torch.distributed.ProcessGroup = field(init=False)
# _EXPERT_TENSOR_PARALLEL_GROUP
expt_tp: torch.distributed.ProcessGroup = field(init=False)
# _EXPERT_TENSOR_AND_MODEL_PARALLEL_GROUP
tp_ep: torch.distributed.ProcessGroup = field(init=False)
# _EXPERT_TENSOR_MODEL_PIPELINE_PARALLEL_GROUP
tp_ep_pp: torch.distributed.ProcessGroup = field(init=False)
# MoE layers need expt_dp group for sharded state dict
# we need this workaround until distributed checkpoint is refactored
# to have sharded_state_dict can take the PG and pass it down
# TODO (Hepteract): remove this once distributed checkpoint is refactored
# _EXPERT_DATA_PARALLEL_GROUP
expt_dp: torch.distributed.ProcessGroup = field(init=False)
def __init__(self, **kwargs):
for key in kwargs:
if key in [field.name for field in fields(self)]:
setattr(self, key, kwargs[key])
else:
raise ValueError(f"Unknown attribute: {key}")
@classmethod
def use_mpu_process_groups(cls, required_pgs: Optional[List[str]] = None):
"""
Use the default process groups from parallel_state.
Args:
required_pgs (List[str], optional): List of process group names to initialize.
If None, pull all default process groups. Each string should correspond to
one of the dataclass process group attributes.
"""
# Get all available process groups
all_pgs = {field.name for field in fields(cls)}
# If no specific process groups requested, use all
if required_pgs is None:
required_pgs = list(all_pgs)
# Validate requested process groups
invalid_pgs = [pg for pg in required_pgs if pg not in all_pgs]
if invalid_pgs:
raise ValueError(f"Invalid process groups requested: {invalid_pgs}")
# Mapping of attribute names to their initialization functions
pg_to_func = {
'tp': parallel_state.get_tensor_model_parallel_group,
'pp': parallel_state.get_pipeline_model_parallel_group,
'mp': parallel_state.get_model_parallel_group,
'cp': parallel_state.get_context_parallel_group,
'tp_cp': parallel_state.get_tensor_and_context_parallel_group,
'hcp': parallel_state.get_hierarchical_context_parallel_groups,
'ep': parallel_state.get_expert_model_parallel_group,
'expt_tp': parallel_state.get_expert_tensor_parallel_group,
'tp_ep': parallel_state.get_expert_tensor_and_model_parallel_group,
'tp_ep_pp': parallel_state.get_expert_tensor_model_pipeline_parallel_group,
'embd': parallel_state.get_embedding_group,
'pos_embd': parallel_state.get_position_embedding_group,
# TODO (Hepteract): remove this once distributed checkpoint is refactored
'expt_dp': parallel_state.get_expert_data_parallel_group,
}
# Build initialization dict by calling appropriate parallel_state get_foo_group
init_dict = {pg: pg_to_func[pg](False) for pg in required_pgs}
return cls(**init_dict)
@dataclass
class GradCommProcessGroups:
"""Process groups for gradient communication in distributed training.
Fields use init=False and must be set after instance creation.
Args:
dp: Data parallel process group
dp_cp: Data and context parallel group
expt_dp: Expert data parallel group
intra_dp_cp: Intra partial data parallel group
intra_expt_dp: Intra partial expert data parallel group
inter_dist_opt: Inter distributed optimizer instance group
Example:
# Create instance and set needed process groups
grad_pgs = GradCommProcessGroups()
grad_pgs.dp = dp_group
# Pass to distributed data parallel wrapper
ddp_model = DistributedDataParallel(..., process_groups=grad_pgs)
"""
# _DATA_PARALLEL_GROUP
dp: torch.distributed.ProcessGroup = field(init=False)
# _DATA_PARALLEL_GROUP_WITH_CP
dp_cp: torch.distributed.ProcessGroup = field(init=False)
# _EXPERT_DATA_PARALLEL_GROUP
expt_dp: torch.distributed.ProcessGroup = field(init=False)
# _INTRA_PARTIAL_DATA_PARALLEL_GROUP_WITH_CP
intra_dp_cp: torch.distributed.ProcessGroup = field(init=False)
# _INTRA_EXPERT_DATA_PARALLEL_GROUP
intra_expt_dp: torch.distributed.ProcessGroup = field(init=False)
# _INTER_DISTRIBUTED_OPTIMIZER_INSTANCE_GROUP
inter_dist_opt: torch.distributed.ProcessGroup = field(init=False)