-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
Copy pathwaveglow.py
executable file
·34 lines (28 loc) · 1.26 KB
/
waveglow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import lightning.pytorch as pl
from nemo.collections.common.callbacks import LogEpochTimeCallback
from nemo.collections.tts.models import WaveGlowModel
from nemo.core.config import hydra_runner
from nemo.utils.exp_manager import exp_manager
@hydra_runner(config_path="conf", config_name="waveglow")
def main(cfg):
trainer = pl.Trainer(**cfg.trainer)
exp_manager(trainer, cfg.get("exp_manager", None))
model = WaveGlowModel(cfg=cfg.model, trainer=trainer)
epoch_time_logger = LogEpochTimeCallback()
trainer.callbacks.extend([epoch_time_logger])
trainer.fit(model)
if __name__ == '__main__':
main() # noqa pylint: disable=no-value-for-parameter