-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
Copy pathautomodel.py
234 lines (201 loc) · 7.04 KB
/
automodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# NOTE: This script is only an example of using NeMo with NeMo-Run's APIs and is subject to change without notice.
# This script is used for pretraining on local and slurm executors.
# It uses NeMo 2.0 recipes (https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/llm/recipes/) and
# NeMo-Run (https://github.com/NVIDIA/NeMo-Run) to configure and execute the runs.
import argparse
import os
from typing import Optional
import nemo_run as run
import nemo.lightning as nl
from nemo.collections import llm
from nemo.collections.common.tokenizers.huggingface.auto_tokenizer import AutoTokenizer
from nemo.collections.llm.gpt.data.hf_dataset import SquadHFDataModule
from nemo.utils import logging
# TODO: Set your SQuaD dataset path, remember to add the path in custom_mounts if using slurm executor
DATA_PATH = ''
def get_parser():
parser = argparse.ArgumentParser(description="NeMo2.0 Pretraining")
parser.add_argument('--model', default='nvidia/Llama-3_3-Nemotron-Super-49B-v1')
parser.add_argument('--nodes', type=int, default=4)
parser.add_argument('--devices', type=int, default=8)
parser.add_argument('--max-steps', type=int, default=200)
parser.add_argument(
"--tag",
type=str,
help="Optional tag for your experiment title which will be appended after the model/exp name.",
required=False,
default="",
)
parser.add_argument(
"--dryrun",
action="store_true",
help="Do a dryrun and exit",
default=False,
)
parser.add_argument(
"--slurm",
action="store_true",
help="Run on slurm using run.SlurmExecutor",
default=False,
)
parser.add_argument(
"--hf-token",
type=str,
help="Huggingface token for downloading models",
required=False,
default=None,
)
return parser
def slurm_executor(
user: str,
host: str,
remote_job_dir: str,
account: str,
partition: str,
nodes: int,
devices: int,
time: str = "04:00:00",
custom_mounts: Optional[list[str]] = None,
custom_env_vars: Optional[dict[str, str]] = None,
container_image: str = "nvcr.io/nvidia/nemo:25.02",
retries: int = 0,
) -> run.SlurmExecutor:
if not (user and host and remote_job_dir and account and partition and nodes and devices):
raise RuntimeError(
"Please set user, host, remote_job_dir, account, partition, nodes and devices args for using this ",
"function.",
)
mounts = []
if custom_mounts:
mounts.extend(custom_mounts)
env_vars = {
"TRANSFORMERS_OFFLINE": "0",
"TORCH_NCCL_AVOID_RECORD_STREAMS": "1",
"NCCL_NVLS_ENABLE": "0",
"NVTE_DP_AMAX_REDUCE_INTERVAL": "0",
"NVTE_ASYNC_AMAX_REDUCTION": "1",
}
if custom_env_vars:
env_vars |= custom_env_vars
executor = run.SlurmExecutor(
account=account,
partition=partition,
tunnel=run.SSHTunnel(
user=user,
host=host,
job_dir=remote_job_dir,
),
nodes=nodes,
ntasks_per_node=devices,
gpus_per_node=devices,
mem="0",
exclusive=True,
gres="gpu:8",
packager=run.GitArchivePackager(),
)
executor.container_image = container_image
executor.container_mounts = mounts
executor.env_vars = env_vars
executor.retries = retries
executor.time = time
return executor
def local_executor_torchrun(nodes: int = 1, devices: int = 2) -> run.LocalExecutor:
env_vars = {
"TRANSFORMERS_OFFLINE": "0",
"TORCH_NCCL_AVOID_RECORD_STREAMS": "1",
"NCCL_NVLS_ENABLE": "0",
"NVTE_DP_AMAX_REDUCE_INTERVAL": "0",
"NVTE_ASYNC_AMAX_REDUCTION": "1",
"NVTE_FUSED_ATTN": "0",
}
executor = run.LocalExecutor(ntasks_per_node=devices, launcher="torchrun", env_vars=env_vars)
return executor
def main():
args = get_parser().parse_args()
if args.tag and not args.tag.startswith("-"):
args.tag = "-" + args.tag
exp_name = "HFAutoModelForCausalLM"
# Uses configs from NeMo directly
recipe = llm.hf_auto_model_for_causal_lm.finetune_recipe(
model_name=args.model,
name=exp_name,
num_nodes=args.nodes,
num_gpus_per_node=args.devices,
peft_scheme='none',
dir="/nemo_run/checkpoints",
max_steps=args.max_steps,
trust_remote_code=True,
attn_implementation='eager',
)
recipe.trainer.val_check_interval = 50
tokenizer = llm.HFAutoModelForCausalLM.configure_tokenizer(args.model)
recipe.data = run.Config(
SquadHFDataModule,
path_or_dataset=DATA_PATH,
split="train[:100]",
pad_token_id=tokenizer.tokenizer.eos_token_id,
tokenizer=run.Config(AutoTokenizer, pretrained_model_name=args.model),
)
recipe.trainer.strategy = run.Config(
nl.FSDP2Strategy,
data_parallel_size=1,
tensor_parallel_size=1,
context_parallel_size=32,
)
recipe.trainer.plugins = None
if args.hf_token is not None:
os.environ["HF_TOKEN"] = args.hf_token
executor: run.Executor
if args.slurm:
if args.hf_token:
custom_env_vars = {
"HF_TOKEN": args.hf_token,
}
elif os.environ.get("HF_TOKEN"):
custom_env_vars = {
"HF_TOKEN": os.environ["HF_TOKEN"],
}
else:
custom_env_vars = {}
logging.info("No HF_TOKEN provided, gated repos may be inaccessible.")
# TODO: Set your custom parameters for the Slurm Executor.
executor = slurm_executor(
user="",
host="",
remote_job_dir="",
account="",
partition="",
nodes=recipe.trainer.num_nodes,
devices=recipe.trainer.devices,
custom_mounts=[],
custom_env_vars=custom_env_vars,
)
else:
executor = local_executor_torchrun(nodes=recipe.trainer.num_nodes, devices=recipe.trainer.devices)
with run.Experiment(f"{exp_name}{args.tag}") as exp:
for i in range(1):
exp.add(
recipe,
executor=executor,
name=exp_name,
tail_logs=True if isinstance(executor, run.LocalExecutor) else False,
)
if args.dryrun:
exp.dryrun()
else:
exp.run(sequential=True, detach=True)
if __name__ == "__main__":
main()