-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
Copy pathevaluation.py
288 lines (256 loc) · 8.67 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# NOTE: This script is only an example of using NeMo with NeMo-Run's APIs and is subject to change without notice.
# This script is used for evaluation on local and slurm executors using NeMo-Run.
# It uses deploy method from nemo/llm/collections/api.py to deploy nemo2.0 ckpt on PyTriton server and uses evaluate
# method from nemo/llm/collections/api.py to run evaluation on it.
# (https://github.com/NVIDIA/NeMo-Run) to configure and execute the runs.
import argparse
from typing import Optional
import nemo_run as run
from nemo.collections.llm import deploy, evaluate
from nemo.collections.llm.evaluation.api import ApiEndpoint, ConfigParams, EvaluationConfig, EvaluationTarget
ENDPOINT_TYPES = {"chat": "chat/completions/", "completions": "completions/"}
COMPLETIONS_TASKS = (
"gsm8k",
"mgsm",
"mmlu",
"mmlu_pro",
"mmlu_redux",
)
CHAT_TASKS = (
"gpqa_diamond_cot",
"gsm8k_cot_instruct",
"ifeval",
"mgsm_cot",
"mmlu_instruct",
"mmlu_pro_instruct",
"mmlu_redux_instruct",
"wikilingua",
)
EVAL_TASKS = COMPLETIONS_TASKS + CHAT_TASKS
def get_parser():
parser = argparse.ArgumentParser(description="NeMo2.0 Evaluation")
parser.add_argument(
"--nemo_checkpoint",
type=str,
required=True,
help="NeMo 2.0 checkpoint to be evaluated",
)
parser.add_argument(
"--triton_http_address", type=str, default="0.0.0.0", help="IP address at which PyTriton server is created"
)
parser.add_argument("--fastapi_port", type=int, default=8080, help="Port at which FastAPI server is created")
parser.add_argument(
"--endpoint_type",
type=str,
default="completions",
help="Whether to use completions or chat endpoint",
choices=list(ENDPOINT_TYPES),
)
parser.add_argument(
"--max_input_len",
type=int,
default=4096,
help="Max input length of the model",
)
parser.add_argument(
"--tensor_parallelism_size",
type=int,
default=1,
help="Tensor parallelism size to deploy the model",
)
parser.add_argument(
"--pipeline_parallelism_size",
type=int,
default=1,
help="Pipeline parallelism size to deploy the model",
)
parser.add_argument(
"--batch_size",
type=int,
default=2,
help="Batch size for deployment and evaluation",
)
parser.add_argument(
"--eval_task",
type=str,
default="mmlu",
help="Evaluation benchmark to run.",
choices=EVAL_TASKS,
)
parser.add_argument(
"--limit", type=int, default=None, help="Limit evaluation to `limit` samples. Default: use all samples."
)
parser.add_argument(
"--parallel_requests",
type=int,
default=1,
help="Number of parallel requests to send to server. Default: use default for the task.",
)
parser.add_argument(
"--request_timeout",
type=int,
default=None,
help="Request timeout for querying the server. Default: use default for the task.",
)
parser.add_argument(
"--tag",
type=str,
help="Optional tag for your experiment title which will be appended after the model/exp name.",
required=False,
default="",
)
parser.add_argument(
"--dryrun",
action="store_true",
help="Do a dryrun and exit",
default=False,
)
parser.add_argument(
"--slurm",
action="store_true",
help="Run on slurm using run.SlurmExecutor",
default=False,
)
parser.add_argument('--nodes', type=int, default=2, help="Num nodes for the executor")
parser.add_argument('--devices', type=int, default=8, help="Num devices per node for the executor")
parser.add_argument(
'--container_image',
type=str,
default="nvcr.io/nvidia/nemo:dev",
help="Container image for the run, only used in case of slurm runs."
"Can be a path as well in case of .sqsh file.",
)
return parser
def slurm_executor(
user: str,
host: str,
remote_job_dir: str,
account: str,
partition: str,
nodes: int,
devices: int,
container_image: str,
time: str = "04:00:00",
custom_mounts: Optional[list[str]] = None,
custom_env_vars: Optional[dict[str, str]] = None,
retries: int = 0,
) -> run.SlurmExecutor:
if not (user and host and remote_job_dir and account and partition and nodes and devices):
raise RuntimeError(
"Please set user, host, remote_job_dir, account, partition, nodes and devices args for using this ",
"function.",
)
mounts = []
if custom_mounts:
mounts.extend(custom_mounts)
env_vars = {
# required for some eval benchmarks from lm-eval-harness
"HF_DATASETS_TRUST_REMOTE_CODE": "1"
}
if custom_env_vars:
env_vars |= custom_env_vars
executor = run.SlurmExecutor(
account=account,
partition=partition,
tunnel=run.SSHTunnel(
user=user,
host=host,
job_dir=remote_job_dir,
),
nodes=nodes,
ntasks_per_node=1,
exclusive=True,
packager=run.GitArchivePackager(),
)
executor.container_image = container_image
executor.container_mounts = mounts
executor.env_vars = env_vars
executor.retries = retries
executor.time = time
return executor
def local_executor_torchrun() -> run.LocalExecutor:
env_vars = {
# required for some eval benchmarks from lm-eval-harness
"HF_DATASETS_TRUST_REMOTE_CODE": "1"
}
executor = run.LocalExecutor(env_vars=env_vars)
return executor
def main():
args = get_parser().parse_args()
if args.tag and not args.tag.startswith("-"):
args.tag = "-" + args.tag
exp_name = "NeMoEvaluation"
deploy_fn = run.Partial(
deploy,
nemo_checkpoint=args.nemo_checkpoint,
fastapi_port=args.fastapi_port,
triton_http_address=args.triton_http_address,
max_input_len=args.max_input_len,
tensor_parallelism_size=args.tensor_parallelism_size,
pipeline_parallelism_size=args.pipeline_parallelism_size,
max_batch_size=args.batch_size,
)
api_endpoint = run.Config(
ApiEndpoint,
url=f"http://{args.triton_http_address}:{args.fastapi_port}/v1/{ENDPOINT_TYPES[args.endpoint_type]}",
type=args.endpoint_type,
)
eval_target = run.Config(EvaluationTarget, api_endpoint=api_endpoint)
eval_params = run.Config(
ConfigParams,
limit_samples=args.limit,
parallelism=args.parallel_requests,
request_timeout=args.request_timeout,
)
eval_config = run.Config(EvaluationConfig, type=args.eval_task, params=eval_params)
eval_fn = run.Partial(evaluate, target_cfg=eval_target, eval_cfg=eval_config)
executor: run.Executor
executor_eval: run.Executor
if args.slurm:
# TODO: Set your custom parameters for the Slurm Executor.
executor = slurm_executor(
user="",
host="",
remote_job_dir="",
account="",
partition="",
nodes=args.nodes,
devices=args.devices,
container_image=args.container_image,
custom_mounts=[],
)
executor.srun_args = ["--mpi=pmix", "--overlap", "--ntasks-per-node=1"]
executor_eval = executor.clone()
else:
executor = local_executor_torchrun()
executor_eval = None
with run.Experiment(f"{exp_name}{args.tag}") as exp:
if args.slurm:
exp.add(
[deploy_fn, eval_fn],
executor=[executor, executor_eval],
name=exp_name,
tail_logs=True if isinstance(executor, run.LocalExecutor) else False,
)
else:
exp.add(deploy_fn, executor=executor, name=f"{exp_name}_deploy")
exp.add(eval_fn, executor=executor, name=f"{exp_name}_evaluate")
if args.dryrun:
exp.dryrun()
else:
exp.run()
if __name__ == "__main__":
main()