-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
Copy pathgenerate.py
218 lines (203 loc) · 6.16 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# NOTE: This script is just an example of using NeMo checkpoints
# for generating outputs and is subject to change without notice.
from argparse import ArgumentParser
import torch
import torch.distributed
from megatron.core.inference.common_inference_params import CommonInferenceParams
import nemo.lightning as nl
from nemo.collections.llm import api
"""
torchrun --nproc-per-node=8 /opt/NeMo/scripts/llm/generate.py \
--model_path=<PATH_TO_NEMO2_MODEL> \
--tp=8 \
--devices=8 \
--num_tokens_to_generate=40 \
--temperature=0.001 \
--top_p=0.0 \
--top_k=1 \
--fp8
"""
def get_args():
"""
Parse the command line arguments.
"""
parser = ArgumentParser(description="""Run generation on a few sample prompts given the checkpoint path.""")
parser.add_argument(
"--prompts",
type=str,
nargs="+",
default=[
"Q: How are you?",
"Q: How big is the universe?",
"Q: How is the weather?",
"Q: How many stars are there?",
"Paris is know for its ",
"In a hot sunny day, you should ",
"Q: How many planets are in the solar system?",
"Q: How old are you?",
],
help="List of prompt strings",
)
parser.add_argument(
"--model_path",
type=str,
required=True,
help="""Path to NeMo 2 checkpoint""",
)
parser.add_argument(
"--tp",
type=int,
default=1,
help="""Tensor parallel size""",
)
parser.add_argument(
"--pp",
type=int,
default=1,
help="""Pipeline parallel size""",
)
parser.add_argument(
"--ep",
type=int,
default=1,
help="""Expert parallel size""",
)
parser.add_argument(
"--devices",
type=int,
default=1,
help="""Number of GPUs to use on a single node""",
)
parser.add_argument(
"--nodes",
type=int,
default=1,
help="""Number of nodes to use""",
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="""Temperature to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
)
parser.add_argument(
"--top_p",
type=float,
default=0.95,
help="""top_p to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
)
parser.add_argument(
"--top_k",
type=float,
default=0,
help="""top_k to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
)
parser.add_argument(
"--add_BOS",
action="store_true",
help="""Whether to add BOS token to the prompt""",
)
parser.add_argument(
"--num_tokens_to_generate",
type=int,
default=25,
help="""Number of tokens to generate per prompt""",
)
parser.add_argument(
"--fp8",
action="store_true",
help="""Whether to run inference in FP8 precision""",
)
parser.add_argument(
"--fp8_recipe",
type=str,
default="tensorwise",
help="""fp8 recipe, can be 'tensorwise', 'delayed', or 'mxfp8'""",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=8,
help="""Maximum batch size for inference""",
)
parser.add_argument(
"--random_seed",
type=int,
default=1234,
help="""Random seed for generation""",
)
parser.add_argument(
"--legacy_ckpt",
action="store_true",
help="""Load ckpt saved with TE < 1.14""",
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
if args.fp8:
assert len(args.prompts) % 8 == 0, "Batch size should be divisible by 8 for FP8 inference"
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=args.tp,
pipeline_model_parallel_size=args.pp,
expert_model_parallel_size=args.ep,
context_parallel_size=1,
sequence_parallel=False,
setup_optimizers=False,
store_optimizer_states=False,
)
trainer = nl.Trainer(
accelerator="gpu",
devices=args.devices,
num_nodes=args.nodes,
strategy=strategy,
plugins=nl.MegatronMixedPrecision(
precision="bf16-mixed",
params_dtype=torch.bfloat16,
pipeline_dtype=torch.bfloat16,
autocast_enabled=False,
grad_reduce_in_fp32=False,
fp8="hybrid" if args.fp8 else None,
fp8_recipe=args.fp8_recipe if args.fp8 else None,
fp8_amax_history_len=1,
fp8_amax_compute_algo="max" if args.fp8 else "most_recent",
),
)
# Load ckpt saved with TE < 1.14
if args.legacy_ckpt:
trainer.strategy.ckpt_load_strictness = False
prompts = args.prompts
results = api.generate(
path=args.model_path,
prompts=prompts,
trainer=trainer,
add_BOS=args.add_BOS,
inference_params=CommonInferenceParams(
temperature=args.temperature,
top_p=args.top_p,
top_k=args.top_k,
num_tokens_to_generate=args.num_tokens_to_generate,
),
text_only=True,
max_batch_size=args.max_batch_size,
random_seed=args.random_seed,
)
if torch.distributed.get_rank() == 0:
for i, r in enumerate(results):
print(prompts[i])
print("*" * 50)
print(r)
print("\n\n")