-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
Copy pathpreprocess_data_for_megatron.py
372 lines (320 loc) · 14 KB
/
preprocess_data_for_megatron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processing data for megatron pretraining.
It can be used to convert the text data into indexed dataset for BERT, GPT, T5, RETRO models etc.
Example script to preprocess the loose JSON file for BERT model
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_DB_LOOSE_JSON_FILE \
--json-keys=text \
--vocab-file=PATH_TO_VOCAB_FILE \
--dataset-impl=mmap \
--output-prefix=YOUR_DATA_PREFIX \
--tokenizer-library=megatron \
--tokenizer-type=BertWordPieceCase \
--split-sentences \
--workers=48
```
Example script to preprocess the loose JSON file for GPT model
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_DB_LOOSE_JSON_FILE \
--json-keys=text \
--tokenizer-library=megatron \
--tokenizer-type=GPT2BPETokenizer \
--dataset-impl=mmap \
--merge-file=YOUR_MERGE_FILE \
--vocab-file=YOUR_VOCAB_FILE \
--output-prefix=YOUR_DATA_PREFIX \
--append-eod \
--workers=48
```
Example script to preprocess the loose JSON file for retrieval DB Dataset
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_DB_LOOSE_JSON_FILE \
--json-keys=text \
--tokenizer-library=sentencepiece \
--dataset-impl=retmmap \
--tokenizer-model=tokenizer.model \
--output-prefix=retro_db \
--need-pad-id \
--append-eod \
--retrieval-db \
--chunk_size=64 \
--workers=64
```
Example script to preprocess the JSON file for retrieval training dataset
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_TRAIN_VAL_TEST_LOOSE_JSON_FILE \
--json-keys=text \
--tokenizer-library=sentencepiece \
--dataset-impl=retmmap \
--tokenizer-model=tokenizer.model \
--output-prefix=retro_data \
--need-pad-id \
--append-eod \
--chunk_size=64 \
--workers=64
```
This script supports multiple tokenizer libraries for data preprocessing.
Example1: Preprocess data using any tokenizer hosted on HuggingFace:
--tokenizer-library=sentencepiece --tokenizer-type=HF-URL
Example2: Preprocess data using SentencePiece tokenizer with tokenizer.model:
--tokenizer-library=sentencepiece --tokenizer-model=tokenizer.model
Refer to get_nmt_tokenizer in nemo/collections/nlp/modules/common/tokenizer_util.py for complete usage.
"""
import argparse
import gzip
import json
import multiprocessing
import os
import pathlib
import sys
import time
import ftfy
import torch
from nemo.collections.nlp.data.language_modeling.megatron import indexed_dataset
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
try:
import nltk
nltk_available = True
except ImportError:
nltk_available = False
# https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer
class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars):
_period_context_fmt = r"""
\S* # some word material
%(SentEndChars)s # a potential sentence ending
\s* # <-- THIS is what I changed
(?=(?P<after_tok>
%(NonWord)s # either other punctuation
|
(?P<next_tok>\S+) # <-- Normally you would have \s+ here
))"""
class IdentitySplitter(object):
def tokenize(self, *text):
return text
def get_tokenizer(args):
tokenizer = get_nmt_tokenizer(
library=args.tokenizer_library,
model_name=args.tokenizer_type,
tokenizer_model=args.tokenizer_model,
vocab_file=args.vocab_file,
merges_file=args.merge_file,
delimiter=args.delimiter,
)
if args.need_pad_id:
if not hasattr(tokenizer, "pad_id"):
tokenizer.add_special_tokens({'pad_token': '<pad>'})
elif hasattr(tokenizer, "pad_id") and (tokenizer.pad_id is None or tokenizer.pad_id < 0):
tokenizer.add_special_tokens({'pad_token': '<pad>'})
return tokenizer
class Encoder(object):
def __init__(self, args):
self.args = args
def initializer(self):
# Use Encoder class as a container for global data
Encoder.tokenizer = get_tokenizer(self.args)
if self.args.split_sentences:
if not nltk_available:
print("NLTK is not available to split sentences.")
exit()
splitter = nltk.load("tokenizers/punkt/english.pickle")
if self.args.keep_newlines:
# this prevents punkt from eating newlines after sentences
Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer(
train_text=splitter._params, lang_vars=CustomLanguageVars()
)
else:
Encoder.splitter = splitter
else:
Encoder.splitter = IdentitySplitter()
def encode(self, json_line):
if not self.args.text_file:
data = json.loads(json_line)
ids = {}
for key in self.args.json_keys:
text = data[key]
if self.args.apply_ftfy:
text = ftfy.fix_text(text)
doc_ids = []
for sentence in Encoder.splitter.tokenize(text):
sentence_ids = Encoder.tokenizer.text_to_ids(sentence)
if len(sentence_ids) > 0:
doc_ids.append(sentence_ids)
if len(doc_ids) > 0 and self.args.append_eod:
doc_ids[-1].append(Encoder.tokenizer.eos_id)
ids[key] = doc_ids
else:
data = json_line
ids = {}
text = data.strip()
if self.args.apply_ftfy:
text = ftfy.fix_text(text)
doc_ids = []
for sentence in Encoder.splitter.tokenize(text):
sentence_ids = Encoder.tokenizer.text_to_ids(sentence)
if len(sentence_ids) > 0:
doc_ids.append(sentence_ids)
if len(doc_ids) > 0 and self.args.append_eod:
doc_ids[-1].append(Encoder.tokenizer.eos_id)
ids['text'] = doc_ids
return ids, len(json_line)
def get_args():
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title='input data')
group.add_argument(
'--input',
type=str,
required=True,
help='Path to the input json or json.gz file. If preprocessing an entire folder, set the --preproc-folder flag and provide the path to the folder in this arg.',
)
group.add_argument(
'--json-keys', nargs='+', default=['text'], help='space separate listed of keys to extract from json'
)
group.add_argument('--split-sentences', action='store_true', help='Split documents into sentences.')
group.add_argument('--keep-newlines', action='store_true', help='Keep newlines between sentences when splitting.')
group.add_argument('--text_file', action='store_true', help='Use text file instead of json.')
group = parser.add_argument_group(title='tokenizer')
group.add_argument(
'--tokenizer-library',
type=str,
required=True,
choices=['sentencepiece', 'megatron', 'huggingface', 'tabular'],
help='What tokenizer library to use.',
)
group.add_argument(
'--tokenizer-type',
type=str,
default=None,
help='What type of tokenizer to use.',
)
group.add_argument(
'--tokenizer-model',
type=str,
default=None,
help='Path to tokenizer model.',
)
group.add_argument('--vocab-file', type=str, default=None, help='Path to the vocab file')
group.add_argument('--files-filter', type=str, default='**/*.json*', help='files filter str')
group.add_argument('--merge-file', type=str, default=None, help='Path to the BPE merge file (if necessary).')
group.add_argument('--delimiter', type=str, default=None, help='delimiter used for tabular tokenizer')
group.add_argument('--append-eod', action='store_true', help='Append an <eod> token to the end of a document.')
group.add_argument('--retrieval-db', action='store_true', help='Dataset used for retrieval.')
group.add_argument('--need-pad-id', action='store_true', help='Whether we need the pad id for the tokenizer')
group = parser.add_argument_group(title='output data')
group.add_argument('--output-prefix', type=str, required=True, help='Path to binary output file without suffix')
group.add_argument('--dataset-impl', type=str, default='mmap', choices=['lazy', 'cached', 'mmap', 'retmmap'])
group = parser.add_argument_group(title='runtime')
group.add_argument('--workers', type=int, default=1, help='Number of worker processes to launch')
group.add_argument('--chunk_size', type=int, default=64, help='chunk size used for retrieval')
group.add_argument(
'--chunk_stride_size', type=int, default=64, help='the stride size for neighbor chunks used for retrieval'
)
group.add_argument('--log-interval', type=int, default=100, help='Interval between progress updates')
group.add_argument(
'--preproc-folder',
action='store_true',
help='If set, will preprocess all .json or .jsonl or json.gz or .jsonl.gz files into a single .bin and .idx file. Folder path provided via the --input arg',
)
group.add_argument('--apply-ftfy', action='store_true', help='If set, will apply ftfy to the input text')
args = parser.parse_args()
args.keep_empty = False
if args.tokenizer_type is not None and args.tokenizer_type.lower().startswith('bert'):
if not args.split_sentences:
print("Bert tokenizer detected, are you sure you don't want to split sentences?")
# some default/dummy values for the tokenizer
args.rank = 0
args.make_vocab_size_divisible_by = 128
args.tensor_model_parallel_size = 1
args.vocab_extra_ids = 0
# TODO: There are dependencies b/w libraries and model files / tokenizer type strings to check.
assert args.tokenizer_type is not None or args.tokenizer_model is not None
return args
def main():
args = get_args()
startup_start = time.time()
if args.preproc_folder:
print('Searching folder for .json or .jsonl or json.gz or .jsonl.gz files...')
assert os.path.exists(args.input), f'Folder does not exist: {args.input}'
json_files = (str(f) for f in pathlib.Path(args.input).glob(args.files_filter))
json_files = [
f
for f in json_files
if f.endswith('.json') or f.endswith('.jsonl') or f.endswith('.json.gz') or f.endswith('.jsonl.gz')
]
if len(json_files) == 0:
raise FileNotFoundError('No .json or .jsonl or json.gz or .jsonl.gz files found in folder.')
else:
print(f'Found {len(json_files)} .json or .jsonl or json.gz or .jsonl.gz files.')
else:
assert os.path.exists(args.input), f'File does not exist: {args.input}'
json_files = [args.input]
if nltk_available and args.split_sentences:
nltk.download("punkt", quiet=True)
encoder = Encoder(args)
if args.dataset_impl == 'retmmap':
assert args.need_pad_id, "retmmap need --need_pad_id flag"
tokenizer = get_tokenizer(args)
level = "document"
if args.split_sentences:
level = "sentence"
print(f"Vocab size: {tokenizer.vocab_size}")
print(f"Output prefix: {args.output_prefix}")
output_bin_files = {}
output_idx_files = {}
builders = {}
for key in args.json_keys:
output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix, key, level)
output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix, key, level)
builders[key] = indexed_dataset.make_builder(
output_bin_files[key],
impl=args.dataset_impl,
chunk_size=args.chunk_size,
pad_id=tokenizer.pad_id if getattr(tokenizer, "pad_id", None) is not None else 0,
retrieval_db=args.retrieval_db,
vocab_size=tokenizer.vocab_size,
stride=args.chunk_stride_size,
)
startup_end = time.time()
proc_start = time.time()
total_bytes_processed = 0
print("Time to startup:", startup_end - startup_start)
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
for idx, json_file in enumerate(json_files):
print(f'Processing file {json_file} {idx + 1}/{len(json_files)}')
if json_file.endswith('.gz'):
fin = gzip.open(json_file, 'r')
else:
fin = open(json_file, 'r', encoding='utf-8')
encoded_docs = pool.imap(encoder.encode, fin, 25)
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
total_bytes_processed += bytes_processed
for key, sentences in doc.items():
if len(sentences) == 0:
continue
for sentence in sentences:
builders[key].add_item(torch.IntTensor(sentence))
builders[key].end_document()
if i % args.log_interval == 0:
current = time.time()
elapsed = current - proc_start
mbs = total_bytes_processed / elapsed / 1024 / 1024
print(f"Processed {i} documents", f"({i/elapsed} docs/s, {mbs} MB/s).", file=sys.stderr)
for key in args.json_keys:
builders[key].finalize(output_idx_files[key])
if __name__ == '__main__':
main()