generated from The-Pocket/PocketFlow-Template-Python
-
Notifications
You must be signed in to change notification settings - Fork 469
/
Copy pathnodes.py
731 lines (604 loc) · 37.2 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
import os
import yaml
from pocketflow import Node, BatchNode
from utils.crawl_github_files import crawl_github_files
from utils.call_llm import call_llm
from utils.crawl_local_files import crawl_local_files
# Helper to get content for specific file indices
def get_content_for_indices(files_data, indices):
content_map = {}
for i in indices:
if 0 <= i < len(files_data):
path, content = files_data[i]
content_map[f"{i} # {path}"] = content # Use index + path as key for context
return content_map
class FetchRepo(Node):
def prep(self, shared):
repo_url = shared.get("repo_url")
local_dir = shared.get("local_dir")
project_name = shared.get("project_name")
if not project_name:
# Basic name derivation from URL or directory
if repo_url:
project_name = repo_url.split('/')[-1].replace('.git', '')
else:
project_name = os.path.basename(os.path.abspath(local_dir))
shared["project_name"] = project_name
# Get file patterns directly from shared
include_patterns = shared["include_patterns"]
exclude_patterns = shared["exclude_patterns"]
max_file_size = shared["max_file_size"]
return {
"repo_url": repo_url,
"local_dir": local_dir,
"token": shared.get("github_token"),
"include_patterns": include_patterns,
"exclude_patterns": exclude_patterns,
"max_file_size": max_file_size,
"use_relative_paths": True
}
def exec(self, prep_res):
if prep_res["repo_url"]:
print(f"Crawling repository: {prep_res['repo_url']}...")
result = crawl_github_files(
repo_url=prep_res["repo_url"],
token=prep_res["token"],
include_patterns=prep_res["include_patterns"],
exclude_patterns=prep_res["exclude_patterns"],
max_file_size=prep_res["max_file_size"],
use_relative_paths=prep_res["use_relative_paths"]
)
else:
print(f"Crawling directory: {prep_res['local_dir']}...")
result = crawl_local_files(
directory=prep_res["local_dir"],
include_patterns=prep_res["include_patterns"],
exclude_patterns=prep_res["exclude_patterns"],
max_file_size=prep_res["max_file_size"],
use_relative_paths=prep_res["use_relative_paths"]
)
# Convert dict to list of tuples: [(path, content), ...]
files_list = list(result.get("files", {}).items())
if len(files_list) == 0:
raise(ValueError("Failed to fetch files"))
print(f"Fetched {len(files_list)} files.")
return files_list
def post(self, shared, prep_res, exec_res):
shared["files"] = exec_res # List of (path, content) tuples
class IdentifyAbstractions(Node):
def prep(self, shared):
files_data = shared["files"]
project_name = shared["project_name"] # Get project name
language = shared.get("language", "english") # Get language
# Helper to create context from files, respecting limits (basic example)
def create_llm_context(files_data):
context = ""
file_info = [] # Store tuples of (index, path)
for i, (path, content) in enumerate(files_data):
entry = f"--- File Index {i}: {path} ---\n{content}\n\n"
context += entry
file_info.append((i, path))
return context, file_info # file_info is list of (index, path)
context, file_info = create_llm_context(files_data)
# Format file info for the prompt (comment is just a hint for LLM)
file_listing_for_prompt = "\n".join([f"- {idx} # {path}" for idx, path in file_info])
return context, file_listing_for_prompt, len(files_data), project_name, language # Return language
def exec(self, prep_res):
context, file_listing_for_prompt, file_count, project_name, language = prep_res # Unpack project name and language
print(f"Identifying abstractions using LLM...")
# Add language instruction and hints only if not English
language_instruction = ""
name_lang_hint = ""
desc_lang_hint = ""
if language.lower() != "english":
language_instruction = f"IMPORTANT: Generate the `name` and `description` for each abstraction in **{language.capitalize()}** language. Do NOT use English for these fields.\n\n"
# Keep specific hints here as name/description are primary targets
name_lang_hint = f" (value in {language.capitalize()})"
desc_lang_hint = f" (value in {language.capitalize()})"
prompt = f"""
For the project `{project_name}`:
Codebase Context:
{context}
{language_instruction}Analyze the codebase context.
Identify the top 5-10 core most important abstractions to help those new to the codebase.
For each abstraction, provide:
1. A concise `name`{name_lang_hint}.
2. A beginner-friendly `description` explaining what it is with a simple analogy, in around 100 words{desc_lang_hint}.
3. A list of relevant `file_indices` (integers) using the format `idx # path/comment`.
List of file indices and paths present in the context:
{file_listing_for_prompt}
Format the output as a YAML list of dictionaries:
```yaml
- name: |
Query Processing{name_lang_hint}
description: |
Explains what the abstraction does.
It's like a central dispatcher routing requests.{desc_lang_hint}
file_indices:
- 0 # path/to/file1.py
- 3 # path/to/related.py
- name: |
Query Optimization{name_lang_hint}
description: |
Another core concept, similar to a blueprint for objects.{desc_lang_hint}
file_indices:
- 5 # path/to/another.js
# ... up to 10 abstractions
```"""
response = call_llm(prompt)
# --- Validation ---
yaml_str = response.strip().split("```yaml")[1].split("```")[0].strip()
abstractions = yaml.safe_load(yaml_str)
if not isinstance(abstractions, list):
raise ValueError("LLM Output is not a list")
validated_abstractions = []
for item in abstractions:
if not isinstance(item, dict) or not all(k in item for k in ["name", "description", "file_indices"]):
raise ValueError(f"Missing keys in abstraction item: {item}")
if not isinstance(item["name"], str):
raise ValueError(f"Name is not a string in item: {item}")
if not isinstance(item["description"], str):
raise ValueError(f"Description is not a string in item: {item}")
if not isinstance(item["file_indices"], list):
raise ValueError(f"file_indices is not a list in item: {item}")
# Validate indices
validated_indices = []
for idx_entry in item["file_indices"]:
try:
if isinstance(idx_entry, int):
idx = idx_entry
elif isinstance(idx_entry, str) and '#' in idx_entry:
idx = int(idx_entry.split('#')[0].strip())
else:
idx = int(str(idx_entry).strip())
if not (0 <= idx < file_count):
raise ValueError(f"Invalid file index {idx} found in item {item['name']}. Max index is {file_count - 1}.")
validated_indices.append(idx)
except (ValueError, TypeError):
raise ValueError(f"Could not parse index from entry: {idx_entry} in item {item['name']}")
item["files"] = sorted(list(set(validated_indices)))
# Store only the required fields
validated_abstractions.append({
"name": item["name"], # Potentially translated name
"description": item["description"], # Potentially translated description
"files": item["files"]
})
print(f"Identified {len(validated_abstractions)} abstractions.")
return validated_abstractions
def post(self, shared, prep_res, exec_res):
shared["abstractions"] = exec_res # List of {"name": str, "description": str, "files": [int]}
class AnalyzeRelationships(Node):
def prep(self, shared):
abstractions = shared["abstractions"] # Now contains 'files' list of indices, name/description potentially translated
files_data = shared["files"]
project_name = shared["project_name"] # Get project name
language = shared.get("language", "english") # Get language
# Create context with abstraction names, indices, descriptions, and relevant file snippets
context = "Identified Abstractions:\n"
all_relevant_indices = set()
abstraction_info_for_prompt = []
for i, abstr in enumerate(abstractions):
# Use 'files' which contains indices directly
file_indices_str = ", ".join(map(str, abstr['files']))
# Abstraction name and description might be translated already
info_line = f"- Index {i}: {abstr['name']} (Relevant file indices: [{file_indices_str}])\n Description: {abstr['description']}"
context += info_line + "\n"
abstraction_info_for_prompt.append(f"{i} # {abstr['name']}") # Use potentially translated name here too
all_relevant_indices.update(abstr['files'])
context += "\nRelevant File Snippets (Referenced by Index and Path):\n"
# Get content for relevant files using helper
relevant_files_content_map = get_content_for_indices(
files_data,
sorted(list(all_relevant_indices))
)
# Format file content for context
file_context_str = "\n\n".join(
f"--- File: {idx_path} ---\n{content}"
for idx_path, content in relevant_files_content_map.items()
)
context += file_context_str
return context, "\n".join(abstraction_info_for_prompt), project_name, language # Return language
def exec(self, prep_res):
context, abstraction_listing, project_name, language = prep_res # Unpack project name and language
print(f"Analyzing relationships using LLM...")
# Add language instruction and hints only if not English
language_instruction = ""
lang_hint = ""
list_lang_note = ""
if language.lower() != "english":
language_instruction = f"IMPORTANT: Generate the `summary` and relationship `label` fields in **{language.capitalize()}** language. Do NOT use English for these fields.\n\n"
lang_hint = f" (in {language.capitalize()})"
list_lang_note = f" (Names might be in {language.capitalize()})" # Note for the input list
prompt = f"""
Based on the following abstractions and relevant code snippets from the project `{project_name}`:
List of Abstraction Indices and Names{list_lang_note}:
{abstraction_listing}
Context (Abstractions, Descriptions, Code):
{context}
{language_instruction}Please provide:
1. A high-level `summary` of the project's main purpose and functionality in a few beginner-friendly sentences{lang_hint}. Use markdown formatting with **bold** and *italic* text to highlight important concepts.
2. A list (`relationships`) describing the key interactions between these abstractions. For each relationship, specify:
- `from_abstraction`: Index of the source abstraction (e.g., `0 # AbstractionName1`)
- `to_abstraction`: Index of the target abstraction (e.g., `1 # AbstractionName2`)
- `label`: A brief label for the interaction **in just a few words**{lang_hint} (e.g., "Manages", "Inherits", "Uses").
Ideally the relationship should be backed by one abstraction calling or passing parameters to another.
Simplify the relationship and exclude those non-important ones.
IMPORTANT: Make sure EVERY abstraction is involved in at least ONE relationship (either as source or target). Each abstraction index must appear at least once across all relationships.
Format the output as YAML:
```yaml
summary: |
A brief, simple explanation of the project{lang_hint}.
Can span multiple lines with **bold** and *italic* for emphasis.
relationships:
- from_abstraction: 0 # AbstractionName1
to_abstraction: 1 # AbstractionName2
label: "Manages"{lang_hint}
- from_abstraction: 2 # AbstractionName3
to_abstraction: 0 # AbstractionName1
label: "Provides config"{lang_hint}
# ... other relationships
```
Now, provide the YAML output:
"""
response = call_llm(prompt)
# --- Validation ---
yaml_str = response.strip().split("```yaml")[1].split("```")[0].strip()
relationships_data = yaml.safe_load(yaml_str)
if not isinstance(relationships_data, dict) or not all(k in relationships_data for k in ["summary", "relationships"]):
raise ValueError("LLM output is not a dict or missing keys ('summary', 'relationships')")
if not isinstance(relationships_data["summary"], str):
raise ValueError("summary is not a string")
if not isinstance(relationships_data["relationships"], list):
raise ValueError("relationships is not a list")
# Validate relationships structure
validated_relationships = []
num_abstractions = len(abstraction_listing.split('\n'))
for rel in relationships_data["relationships"]:
# Check for 'label' key
if not isinstance(rel, dict) or not all(k in rel for k in ["from_abstraction", "to_abstraction", "label"]):
raise ValueError(f"Missing keys (expected from_abstraction, to_abstraction, label) in relationship item: {rel}")
# Validate 'label' is a string
if not isinstance(rel["label"], str):
raise ValueError(f"Relationship label is not a string: {rel}")
# Validate indices
try:
from_idx = int(str(rel["from_abstraction"]).split('#')[0].strip())
to_idx = int(str(rel["to_abstraction"]).split('#')[0].strip())
if not (0 <= from_idx < num_abstractions and 0 <= to_idx < num_abstractions):
raise ValueError(f"Invalid index in relationship: from={from_idx}, to={to_idx}. Max index is {num_abstractions-1}.")
validated_relationships.append({
"from": from_idx,
"to": to_idx,
"label": rel["label"] # Potentially translated label
})
except (ValueError, TypeError):
raise ValueError(f"Could not parse indices from relationship: {rel}")
print("Generated project summary and relationship details.")
return {
"summary": relationships_data["summary"], # Potentially translated summary
"details": validated_relationships # Store validated, index-based relationships with potentially translated labels
}
def post(self, shared, prep_res, exec_res):
# Structure is now {"summary": str, "details": [{"from": int, "to": int, "label": str}]}
# Summary and label might be translated
shared["relationships"] = exec_res
class OrderChapters(Node):
def prep(self, shared):
abstractions = shared["abstractions"] # Name/description might be translated
relationships = shared["relationships"] # Summary/label might be translated
project_name = shared["project_name"] # Get project name
language = shared.get("language", "english") # Get language
# Prepare context for the LLM
abstraction_info_for_prompt = []
for i, a in enumerate(abstractions):
abstraction_info_for_prompt.append(f"- {i} # {a['name']}") # Use potentially translated name
abstraction_listing = "\n".join(abstraction_info_for_prompt)
# Use potentially translated summary and labels
summary_note = ""
if language.lower() != "english":
summary_note = f" (Note: Project Summary might be in {language.capitalize()})"
context = f"Project Summary{summary_note}:\n{relationships['summary']}\n\n"
context += "Relationships (Indices refer to abstractions above):\n"
for rel in relationships['details']:
from_name = abstractions[rel['from']]['name']
to_name = abstractions[rel['to']]['name']
# Use potentially translated 'label'
context += f"- From {rel['from']} ({from_name}) to {rel['to']} ({to_name}): {rel['label']}\n" # Label might be translated
list_lang_note = ""
if language.lower() != "english":
list_lang_note = f" (Names might be in {language.capitalize()})"
return abstraction_listing, context, len(abstractions), project_name, list_lang_note
def exec(self, prep_res):
abstraction_listing, context, num_abstractions, project_name, list_lang_note = prep_res
print("Determining chapter order using LLM...")
# No language variation needed here in prompt instructions, just ordering based on structure
# The input names might be translated, hence the note.
prompt = f"""
Given the following project abstractions and their relationships for the project ```` {project_name} ````:
Abstractions (Index # Name){list_lang_note}:
{abstraction_listing}
Context about relationships and project summary:
{context}
If you are going to make a tutorial for ```` {project_name} ````, what is the best order to explain these abstractions, from first to last?
Ideally, first explain those that are the most important or foundational, perhaps user-facing concepts or entry points. Then move to more detailed, lower-level implementation details or supporting concepts.
Output the ordered list of abstraction indices, including the name in a comment for clarity. Use the format `idx # AbstractionName`.
```yaml
- 2 # FoundationalConcept
- 0 # CoreClassA
- 1 # CoreClassB (uses CoreClassA)
- ...
```
Now, provide the YAML output:
"""
response = call_llm(prompt)
# --- Validation ---
yaml_str = response.strip().split("```yaml")[1].split("```")[0].strip()
ordered_indices_raw = yaml.safe_load(yaml_str)
if not isinstance(ordered_indices_raw, list):
raise ValueError("LLM output is not a list")
ordered_indices = []
seen_indices = set()
for entry in ordered_indices_raw:
try:
if isinstance(entry, int):
idx = entry
elif isinstance(entry, str) and '#' in entry:
idx = int(entry.split('#')[0].strip())
else:
idx = int(str(entry).strip())
if not (0 <= idx < num_abstractions):
raise ValueError(f"Invalid index {idx} in ordered list. Max index is {num_abstractions-1}.")
if idx in seen_indices:
raise ValueError(f"Duplicate index {idx} found in ordered list.")
ordered_indices.append(idx)
seen_indices.add(idx)
except (ValueError, TypeError):
raise ValueError(f"Could not parse index from ordered list entry: {entry}")
# Check if all abstractions are included
if len(ordered_indices) != num_abstractions:
raise ValueError(f"Ordered list length ({len(ordered_indices)}) does not match number of abstractions ({num_abstractions}). Missing indices: {set(range(num_abstractions)) - seen_indices}")
print(f"Determined chapter order (indices): {ordered_indices}")
return ordered_indices # Return the list of indices
def post(self, shared, prep_res, exec_res):
# exec_res is already the list of ordered indices
shared["chapter_order"] = exec_res # List of indices
class WriteChapters(BatchNode):
def prep(self, shared):
chapter_order = shared["chapter_order"] # List of indices
abstractions = shared["abstractions"] # List of dicts, name/desc potentially translated
files_data = shared["files"]
language = shared.get("language", "english") # Get language
# Get already written chapters to provide context
# We store them temporarily during the batch run, not in shared memory yet
# The 'previous_chapters_summary' will be built progressively in the exec context
self.chapters_written_so_far = [] # Use instance variable for temporary storage across exec calls
# Create a complete list of all chapters
all_chapters = []
chapter_filenames = {} # Store chapter filename mapping for linking
for i, abstraction_index in enumerate(chapter_order):
if 0 <= abstraction_index < len(abstractions):
chapter_num = i + 1
chapter_name = abstractions[abstraction_index]["name"] # Potentially translated name
# Create safe filename (from potentially translated name)
safe_name = "".join(c if c.isalnum() else '_' for c in chapter_name).lower()
filename = f"{i+1:02d}_{safe_name}.md"
# Format with link (using potentially translated name)
all_chapters.append(f"{chapter_num}. [{chapter_name}]({filename})")
# Store mapping of chapter index to filename for linking
chapter_filenames[abstraction_index] = {"num": chapter_num, "name": chapter_name, "filename": filename}
# Create a formatted string with all chapters
full_chapter_listing = "\n".join(all_chapters)
items_to_process = []
for i, abstraction_index in enumerate(chapter_order):
if 0 <= abstraction_index < len(abstractions):
abstraction_details = abstractions[abstraction_index] # Contains potentially translated name/desc
# Use 'files' (list of indices) directly
related_file_indices = abstraction_details.get("files", [])
# Get content using helper, passing indices
related_files_content_map = get_content_for_indices(files_data, related_file_indices)
# Get previous chapter info for transitions (uses potentially translated name)
prev_chapter = None
if i > 0:
prev_idx = chapter_order[i-1]
prev_chapter = chapter_filenames[prev_idx]
# Get next chapter info for transitions (uses potentially translated name)
next_chapter = None
if i < len(chapter_order) - 1:
next_idx = chapter_order[i+1]
next_chapter = chapter_filenames[next_idx]
items_to_process.append({
"chapter_num": i + 1,
"abstraction_index": abstraction_index,
"abstraction_details": abstraction_details, # Has potentially translated name/desc
"related_files_content_map": related_files_content_map,
"project_name": shared["project_name"], # Add project name
"full_chapter_listing": full_chapter_listing, # Add the full chapter listing (uses potentially translated names)
"chapter_filenames": chapter_filenames, # Add chapter filenames mapping (uses potentially translated names)
"prev_chapter": prev_chapter, # Add previous chapter info (uses potentially translated name)
"next_chapter": next_chapter, # Add next chapter info (uses potentially translated name)
"language": language, # Add language for multi-language support
# previous_chapters_summary will be added dynamically in exec
})
else:
print(f"Warning: Invalid abstraction index {abstraction_index} in chapter_order. Skipping.")
print(f"Preparing to write {len(items_to_process)} chapters...")
return items_to_process # Iterable for BatchNode
def exec(self, item):
# This runs for each item prepared above
abstraction_name = item["abstraction_details"]["name"] # Potentially translated name
abstraction_description = item["abstraction_details"]["description"] # Potentially translated description
chapter_num = item["chapter_num"]
project_name = item.get("project_name")
language = item.get("language", "english")
print(f"Writing chapter {chapter_num} for: {abstraction_name} using LLM...")
# Prepare file context string from the map
file_context_str = "\n\n".join(
f"--- File: {idx_path.split('# ')[1] if '# ' in idx_path else idx_path} ---\n{content}"
for idx_path, content in item["related_files_content_map"].items()
)
# Get summary of chapters written *before* this one
# Use the temporary instance variable
previous_chapters_summary = "\n---\n".join(self.chapters_written_so_far)
# Add language instruction and context notes only if not English
language_instruction = ""
concept_details_note = ""
structure_note = ""
prev_summary_note = ""
instruction_lang_note = ""
mermaid_lang_note = ""
code_comment_note = ""
link_lang_note = ""
tone_note = ""
if language.lower() != "english":
lang_cap = language.capitalize()
language_instruction = f"IMPORTANT: Write this ENTIRE tutorial chapter in **{lang_cap}**. Some input context (like concept name, description, chapter list, previous summary) might already be in {lang_cap}, but you MUST translate ALL other generated content including explanations, examples, technical terms, and potentially code comments into {lang_cap}. DO NOT use English anywhere except in code syntax, required proper nouns, or when specified. The entire output MUST be in {lang_cap}.\n\n"
concept_details_note = f" (Note: Provided in {lang_cap})"
structure_note = f" (Note: Chapter names might be in {lang_cap})"
prev_summary_note = f" (Note: This summary might be in {lang_cap})"
instruction_lang_note = f" (in {lang_cap})"
mermaid_lang_note = f" (Use {lang_cap} for labels/text if appropriate)"
code_comment_note = f" (Translate to {lang_cap} if possible, otherwise keep minimal English for clarity)"
link_lang_note = f" (Use the {lang_cap} chapter title from the structure above)"
tone_note = f" (appropriate for {lang_cap} readers)"
prompt = f"""
{language_instruction}Write a very beginner-friendly tutorial chapter (in Markdown format) for the project `{project_name}` about the concept: "{abstraction_name}". This is Chapter {chapter_num}.
Concept Details{concept_details_note}:
- Name: {abstraction_name}
- Description:
{abstraction_description}
Complete Tutorial Structure{structure_note}:
{item["full_chapter_listing"]}
Context from previous chapters{prev_summary_note}:
{previous_chapters_summary if previous_chapters_summary else "This is the first chapter."}
Relevant Code Snippets (Code itself remains unchanged):
{file_context_str if file_context_str else "No specific code snippets provided for this abstraction."}
Instructions for the chapter (Generate content in {language.capitalize()} unless specified otherwise):
- Start with a clear heading (e.g., `# Chapter {chapter_num}: {abstraction_name}`). Use the provided concept name.
- If this is not the first chapter, begin with a brief transition from the previous chapter{instruction_lang_note}, referencing it with a proper Markdown link using its name{link_lang_note}.
- Begin with a high-level motivation explaining what problem this abstraction solves{instruction_lang_note}. Start with a central use case as a concrete example. The whole chapter should guide the reader to understand how to solve this use case. Make it very minimal and friendly to beginners.
- If the abstraction is complex, break it down into key concepts. Explain each concept one-by-one in a very beginner-friendly way{instruction_lang_note}.
- Explain how to use this abstraction to solve the use case{instruction_lang_note}. Give example inputs and outputs for code snippets (if the output isn't values, describe at a high level what will happen{instruction_lang_note}).
- Each code block should be BELOW 20 lines! If longer code blocks are needed, break them down into smaller pieces and walk through them one-by-one. Aggresively simplify the code to make it minimal. Use comments{code_comment_note} to skip non-important implementation details. Each code block should have a beginner friendly explanation right after it{instruction_lang_note}.
- Describe the internal implementation to help understand what's under the hood{instruction_lang_note}. First provide a non-code or code-light walkthrough on what happens step-by-step when the abstraction is called{instruction_lang_note}. It's recommended to use a simple sequenceDiagram with a dummy example - keep it minimal with at most 5 participants to ensure clarity. If participant name has space, use: `participant QP as Query Processing`. {mermaid_lang_note}.
- Then dive deeper into code for the internal implementation with references to files. Provide example code blocks, but make them similarly simple and beginner-friendly. Explain{instruction_lang_note}.
- IMPORTANT: When you need to refer to other core abstractions covered in other chapters, ALWAYS use proper Markdown links like this: [Chapter Title](filename.md). Use the Complete Tutorial Structure above to find the correct filename and the chapter title{link_lang_note}. Translate the surrounding text.
- Use mermaid diagrams to illustrate complex concepts (```mermaid``` format). {mermaid_lang_note}.
- Heavily use analogies and examples throughout{instruction_lang_note} to help beginners understand.
- End the chapter with a brief conclusion that summarizes what was learned{instruction_lang_note} and provides a transition to the next chapter{instruction_lang_note}. If there is a next chapter, use a proper Markdown link: [Next Chapter Title](next_chapter_filename){link_lang_note}.
- Ensure the tone is welcoming and easy for a newcomer to understand{tone_note}.
- Output *only* the Markdown content for this chapter.
Now, directly provide a super beginner-friendly Markdown output (DON'T need ```markdown``` tags):
"""
chapter_content = call_llm(prompt)
# Basic validation/cleanup
actual_heading = f"# Chapter {chapter_num}: {abstraction_name}" # Use potentially translated name
if not chapter_content.strip().startswith(f"# Chapter {chapter_num}"):
# Add heading if missing or incorrect, trying to preserve content
lines = chapter_content.strip().split('\n')
if lines and lines[0].strip().startswith("#"): # If there's some heading, replace it
lines[0] = actual_heading
chapter_content = "\n".join(lines)
else: # Otherwise, prepend it
chapter_content = f"{actual_heading}\n\n{chapter_content}"
# Add the generated content to our temporary list for the next iteration's context
self.chapters_written_so_far.append(chapter_content)
return chapter_content # Return the Markdown string (potentially translated)
def post(self, shared, prep_res, exec_res_list):
# exec_res_list contains the generated Markdown for each chapter, in order
shared["chapters"] = exec_res_list
# Clean up the temporary instance variable
del self.chapters_written_so_far
print(f"Finished writing {len(exec_res_list)} chapters.")
class CombineTutorial(Node):
def prep(self, shared):
project_name = shared["project_name"]
output_base_dir = shared.get("output_dir", "output") # Default output dir
output_path = os.path.join(output_base_dir, project_name)
repo_url = shared.get("repo_url") # Get the repository URL
# language = shared.get("language", "english") # No longer needed for fixed strings
# Get potentially translated data
relationships_data = shared["relationships"] # {"summary": str, "details": [{"from": int, "to": int, "label": str}]} -> summary/label potentially translated
chapter_order = shared["chapter_order"] # indices
abstractions = shared["abstractions"] # list of dicts -> name/description potentially translated
chapters_content = shared["chapters"] # list of strings -> content potentially translated
# --- Generate Mermaid Diagram ---
mermaid_lines = ["flowchart TD"]
# Add nodes for each abstraction using potentially translated names
for i, abstr in enumerate(abstractions):
node_id = f"A{i}"
# Use potentially translated name, sanitize for Mermaid ID and label
sanitized_name = abstr['name'].replace('"', '')
node_label = sanitized_name # Using sanitized name only
mermaid_lines.append(f' {node_id}["{node_label}"]') # Node label uses potentially translated name
# Add edges for relationships using potentially translated labels
for rel in relationships_data['details']:
from_node_id = f"A{rel['from']}"
to_node_id = f"A{rel['to']}"
# Use potentially translated label, sanitize
edge_label = rel['label'].replace('"', '').replace('\n', ' ') # Basic sanitization
max_label_len = 30
if len(edge_label) > max_label_len:
edge_label = edge_label[:max_label_len-3] + "..."
mermaid_lines.append(f' {from_node_id} -- "{edge_label}" --> {to_node_id}') # Edge label uses potentially translated label
mermaid_diagram = "\n".join(mermaid_lines)
# --- End Mermaid ---
# --- Prepare index.md content ---
index_content = f"# Tutorial: {project_name}\n\n"
index_content += f"{relationships_data['summary']}\n\n" # Use the potentially translated summary directly
# Keep fixed strings in English
index_content += f"**Source Repository:** [{repo_url}]({repo_url})\n\n"
# Add Mermaid diagram for relationships (diagram itself uses potentially translated names/labels)
index_content += "```mermaid\n"
index_content += mermaid_diagram + "\n"
index_content += "```\n\n"
# Keep fixed strings in English
index_content += f"## Chapters\n\n"
chapter_files = []
# Generate chapter links based on the determined order, using potentially translated names
for i, abstraction_index in enumerate(chapter_order):
# Ensure index is valid and we have content for it
if 0 <= abstraction_index < len(abstractions) and i < len(chapters_content):
abstraction_name = abstractions[abstraction_index]["name"] # Potentially translated name
# Sanitize potentially translated name for filename
safe_name = "".join(c if c.isalnum() else '_' for c in abstraction_name).lower()
filename = f"{i+1:02d}_{safe_name}.md"
index_content += f"{i+1}. [{abstraction_name}]({filename})\n" # Use potentially translated name in link text
# Add attribution to chapter content (using English fixed string)
chapter_content = chapters_content[i] # Potentially translated content
if not chapter_content.endswith("\n\n"):
chapter_content += "\n\n"
# Keep fixed strings in English
chapter_content += f"---\n\nGenerated by [AI Codebase Knowledge Builder](https://github.com/The-Pocket/Tutorial-Codebase-Knowledge)"
# Store filename and corresponding content
chapter_files.append({"filename": filename, "content": chapter_content})
else:
print(f"Warning: Mismatch between chapter order, abstractions, or content at index {i} (abstraction index {abstraction_index}). Skipping file generation for this entry.")
# Add attribution to index content (using English fixed string)
index_content += f"\n\n---\n\nGenerated by [AI Codebase Knowledge Builder](https://github.com/The-Pocket/Tutorial-Codebase-Knowledge)"
return {
"output_path": output_path,
"index_content": index_content,
"chapter_files": chapter_files # List of {"filename": str, "content": str}
}
def exec(self, prep_res):
output_path = prep_res["output_path"]
index_content = prep_res["index_content"]
chapter_files = prep_res["chapter_files"]
print(f"Combining tutorial into directory: {output_path}")
# Rely on Node's built-in retry/fallback
os.makedirs(output_path, exist_ok=True)
# Write index.md
index_filepath = os.path.join(output_path, "index.md")
with open(index_filepath, "w", encoding="utf-8") as f:
f.write(index_content)
print(f" - Wrote {index_filepath}")
# Write chapter files
for chapter_info in chapter_files:
chapter_filepath = os.path.join(output_path, chapter_info["filename"])
with open(chapter_filepath, "w", encoding="utf-8") as f:
f.write(chapter_info["content"])
print(f" - Wrote {chapter_filepath}")
return output_path # Return the final path
def post(self, shared, prep_res, exec_res):
shared["final_output_dir"] = exec_res # Store the output path
print(f"\nTutorial generation complete! Files are in: {exec_res}")