-
Notifications
You must be signed in to change notification settings - Fork 616
/
Copy pathselector.py
171 lines (148 loc) · 5.12 KB
/
selector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from utee import misc
import os
from imagenet import dataset
print = misc.logger.info
from IPython import embed
known_models = [
'mnist', 'svhn', # 28x28
'cifar10', 'cifar100', # 32x32
'stl10', # 96x96
'alexnet', # 224x224
'vgg16', 'vgg16_bn', 'vgg19', 'vgg19_bn', # 224x224
'resnet18', 'resnet34', 'resnet50', 'resnet101','resnet152', # 224x224
'squeezenet_v0', 'squeezenet_v1', #224x224
'inception_v3', # 299x299
]
def mnist(cuda=True, model_root=None):
print("Building and initializing mnist parameters")
from mnist import model, dataset
m = model.mnist(pretrained=os.path.join(model_root, 'mnist.pth'))
if cuda:
m = m.cuda()
return m, dataset.get, False
def svhn(cuda=True, model_root=None):
print("Building and initializing svhn parameters")
from svhn import model, dataset
m = model.svhn(32, pretrained=os.path.join(model_root, 'svhn.pth'))
if cuda:
m = m.cuda()
return m, dataset.get, False
def cifar10(cuda=True, model_root=None):
print("Building and initializing cifar10 parameters")
from cifar import model, dataset
m = model.cifar10(128, pretrained=os.path.join(model_root, 'cifar10.pth'))
if cuda:
m = m.cuda()
return m, dataset.get10, False
def cifar100(cuda=True, model_root=None):
print("Building and initializing cifar100 parameters")
from cifar import model, dataset
m = model.cifar100(128, pretrained=os.path.join(model_root, 'cifar100.pth'))
if cuda:
m = m.cuda()
return m, dataset.get100, False
def stl10(cuda=True, model_root=None):
print("Building and initializing stl10 parameters")
from stl10 import model, dataset
m = model.stl10(32, pretrained=os.path.join(model_root, 'stl10.pth'))
if cuda:
m = m.cuda()
return m, dataset.get, False
def alexnet(cuda=True, model_root=None):
print("Building and initializing alexnet parameters")
from imagenet import alexnet as alx
m = alx.alexnet(True, model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def vgg16(cuda=True, model_root=None):
print("Building and initializing vgg16 parameters")
from imagenet import vgg
m = vgg.vgg16(True, model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def vgg16_bn(cuda=True, model_root=None):
print("Building vgg16_bn parameters")
from imagenet import vgg
m = vgg.vgg16_bn(model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def vgg19(cuda=True, model_root=None):
print("Building and initializing vgg19 parameters")
from imagenet import vgg
m = vgg.vgg19(True, model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def vgg19_bn(cuda=True, model_root=None):
print("Building vgg19_bn parameters")
from imagenet import vgg
m = vgg.vgg19_bn(model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def inception_v3(cuda=True, model_root=None):
print("Building and initializing inception_v3 parameters")
from imagenet import inception
m = inception.inception_v3(True, model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def resnet18(cuda=True, model_root=None):
print("Building and initializing resnet-18 parameters")
from imagenet import resnet
m = resnet.resnet18(True, model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def resnet34(cuda=True, model_root=None):
print("Building and initializing resnet-34 parameters")
from imagenet import resnet
m = resnet.resnet34(True, model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def resnet50(cuda=True, model_root=None):
print("Building and initializing resnet-50 parameters")
from imagenet import resnet
m = resnet.resnet50(True, model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def resnet101(cuda=True, model_root=None):
print("Building and initializing resnet-101 parameters")
from imagenet import resnet
m = resnet.resnet101(True, model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def resnet152(cuda=True, model_root=None):
print("Building and initializing resnet-152 parameters")
from imagenet import resnet
m = resnet.resnet152(True, model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def squeezenet_v0(cuda=True, model_root=None):
print("Building and initializing squeezenet_v0 parameters")
from imagenet import squeezenet
m = squeezenet.squeezenet1_0(True, model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def squeezenet_v1(cuda=True, model_root=None):
print("Building and initializing squeezenet_v1 parameters")
from imagenet import squeezenet
m = squeezenet.squeezenet1_1(True, model_root)
if cuda:
m = m.cuda()
return m, dataset.get, True
def select(model_name, **kwargs):
assert model_name in known_models, model_name
kwargs.setdefault('model_root', os.path.expanduser('~/.torch/models'))
return eval('{}'.format(model_name))(**kwargs)
if __name__ == '__main__':
m1 = alexnet()
embed()