-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathavroio_test.py
630 lines (545 loc) · 22.9 KB
/
avroio_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# pytype: skip-file
import json
import logging
import math
import os
import pytest
import tempfile
import unittest
from typing import List, Any
import fastavro
import hamcrest as hc
from fastavro.schema import parse_schema
from fastavro import writer
import apache_beam as beam
from apache_beam import Create, schema_pb2
from apache_beam.io import avroio
from apache_beam.io import filebasedsource
from apache_beam.io import iobase
from apache_beam.io import source_test_utils
from apache_beam.io.avroio import _FastAvroSource # For testing
from apache_beam.io.avroio import avro_schema_to_beam_schema # For testing
from apache_beam.io.avroio import beam_schema_to_avro_schema # For testing
from apache_beam.io.avroio import avro_union_type_to_beam_type # For testing
from apache_beam.io.avroio import avro_dict_to_beam_row # For testing
from apache_beam.io.avroio import beam_row_to_avro_dict # For testing
from apache_beam.io.avroio import _create_avro_sink # For testing
from apache_beam.io.filesystems import FileSystems
from apache_beam.options.pipeline_options import StandardOptions
from apache_beam.testing.test_pipeline import TestPipeline
from apache_beam.testing.util import assert_that
from apache_beam.testing.util import equal_to
from apache_beam.transforms.display import DisplayData
from apache_beam.transforms.display_test import DisplayDataItemMatcher
from apache_beam.transforms.sql import SqlTransform
from apache_beam.transforms.userstate import CombiningValueStateSpec
from apache_beam.utils.timestamp import Timestamp
from apache_beam.typehints import schemas
# Import snappy optionally; some tests will be skipped when import fails.
try:
import snappy # pylint: disable=import-error
except ImportError:
snappy = None # pylint: disable=invalid-name
logging.warning('python-snappy is not installed; some tests will be skipped.')
RECORDS = [{
'name': 'Thomas', 'favorite_number': 1, 'favorite_color': 'blue'
}, {
'name': 'Henry', 'favorite_number': 3, 'favorite_color': 'green'
}, {
'name': 'Toby', 'favorite_number': 7, 'favorite_color': 'brown'
}, {
'name': 'Gordon', 'favorite_number': 4, 'favorite_color': 'blue'
}, {
'name': 'Emily', 'favorite_number': -1, 'favorite_color': 'Red'
}, {
'name': 'Percy', 'favorite_number': 6, 'favorite_color': 'Green'
}]
class AvroBase(object):
_temp_files: List[str] = []
def __init__(self, methodName='runTest'):
super().__init__(methodName)
self.RECORDS = RECORDS
self.SCHEMA_STRING = '''
{"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [
{"name": "name", "type": "string"},
{"name": "favorite_number", "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}
]
}
'''
def setUp(self):
# Reducing the size of thread pools. Without this test execution may fail in
# environments with limited amount of resources.
filebasedsource.MAX_NUM_THREADS_FOR_SIZE_ESTIMATION = 2
def tearDown(self):
for path in self._temp_files:
if os.path.exists(path):
os.remove(path)
self._temp_files = []
def _write_data(
self,
directory=None,
prefix=None,
codec=None,
count=None,
sync_interval=None):
raise NotImplementedError
def _write_pattern(self, num_files, return_filenames=False):
assert num_files > 0
temp_dir = tempfile.mkdtemp()
file_name = None
file_list = []
for _ in range(num_files):
file_name = self._write_data(directory=temp_dir, prefix='mytemp')
file_list.append(file_name)
assert file_name
file_name_prefix = file_name[:file_name.rfind(os.path.sep)]
if return_filenames:
return (file_name_prefix + os.path.sep + 'mytemp*', file_list)
return file_name_prefix + os.path.sep + 'mytemp*'
def _run_avro_test(
self, pattern, desired_bundle_size, perform_splitting, expected_result):
source = _FastAvroSource(pattern)
if perform_splitting:
assert desired_bundle_size
splits = [
split
for split in source.split(desired_bundle_size=desired_bundle_size)
]
if len(splits) < 2:
raise ValueError(
'Test is trivial. Please adjust it so that at least '
'two splits get generated')
sources_info = [(split.source, split.start_position, split.stop_position)
for split in splits]
source_test_utils.assert_sources_equal_reference_source(
(source, None, None), sources_info)
else:
read_records = source_test_utils.read_from_source(source, None, None)
self.assertCountEqual(expected_result, read_records)
def test_schema_read_write(self):
with tempfile.TemporaryDirectory() as tmp_dirname:
path = os.path.join(tmp_dirname, 'tmp_filename')
rows = [beam.Row(a=1, b=['x', 'y']), beam.Row(a=2, b=['t', 'u'])]
stable_repr = lambda row: json.dumps(row._asdict())
with TestPipeline() as p:
_ = p | Create(rows) | avroio.WriteToAvro(path) | beam.Map(print)
with TestPipeline() as p:
readback = (
p
| avroio.ReadFromAvro(path + '*', as_rows=True)
| beam.Map(stable_repr))
assert_that(readback, equal_to([stable_repr(r) for r in rows]))
@pytest.mark.xlang_sql_expansion_service
@unittest.skipIf(
TestPipeline().get_pipeline_options().view_as(StandardOptions).runner is
None,
"Must be run with a runner that supports staging java artifacts.")
def test_avro_schema_to_beam_schema_with_nullable_atomic_fields(self):
records = []
records.extend(self.RECORDS)
records.append({
'name': 'Bruce', 'favorite_number': None, 'favorite_color': None
})
avro_schema = fastavro.parse_schema(json.loads(self.SCHEMA_STRING))
beam_schema = avro_schema_to_beam_schema(avro_schema)
with TestPipeline() as p:
readback = (
p
| Create(records)
| beam.Map(avro_dict_to_beam_row(avro_schema, beam_schema))
| SqlTransform("SELECT * FROM PCOLLECTION")
| beam.Map(beam_row_to_avro_dict(avro_schema, beam_schema)))
assert_that(readback, equal_to(records))
def test_avro_union_type_to_beam_type_with_nullable_long(self):
union_type = ['null', 'long']
beam_type = avro_union_type_to_beam_type(union_type)
expected_beam_type = schema_pb2.FieldType(
atomic_type=schema_pb2.INT64, nullable=True)
hc.assert_that(beam_type, hc.equal_to(expected_beam_type))
def test_avro_union_type_to_beam_type_with_string_long(self):
union_type = ['string', 'long']
beam_type = avro_union_type_to_beam_type(union_type)
expected_beam_type = schemas.typing_to_runner_api(Any)
hc.assert_that(beam_type, hc.equal_to(expected_beam_type))
def test_avro_schema_to_beam_and_back(self):
avro_schema = fastavro.parse_schema(json.loads(self.SCHEMA_STRING))
beam_schema = avro_schema_to_beam_schema(avro_schema)
converted_avro_schema = beam_schema_to_avro_schema(beam_schema)
expected_fields = json.loads(self.SCHEMA_STRING)["fields"]
hc.assert_that(
converted_avro_schema["fields"], hc.equal_to(expected_fields))
def test_read_without_splitting(self):
file_name = self._write_data()
expected_result = self.RECORDS
self._run_avro_test(file_name, None, False, expected_result)
def test_read_with_splitting(self):
file_name = self._write_data()
expected_result = self.RECORDS
self._run_avro_test(file_name, 100, True, expected_result)
def test_source_display_data(self):
file_name = 'some_avro_source'
source = \
_FastAvroSource(
file_name,
validate=False,
)
dd = DisplayData.create_from(source)
# No extra avro parameters for AvroSource.
expected_items = [
DisplayDataItemMatcher('compression', 'auto'),
DisplayDataItemMatcher('file_pattern', file_name)
]
hc.assert_that(dd.items, hc.contains_inanyorder(*expected_items))
def test_read_display_data(self):
file_name = 'some_avro_source'
read = \
avroio.ReadFromAvro(
file_name,
validate=False)
dd = DisplayData.create_from(read)
# No extra avro parameters for AvroSource.
expected_items = [
DisplayDataItemMatcher('compression', 'auto'),
DisplayDataItemMatcher('file_pattern', file_name)
]
hc.assert_that(dd.items, hc.contains_inanyorder(*expected_items))
def test_sink_display_data(self):
file_name = 'some_avro_sink'
sink = _create_avro_sink(
file_name, self.SCHEMA, 'null', '.end', 0, None, 'application/x-avro')
dd = DisplayData.create_from(sink)
expected_items = [
DisplayDataItemMatcher('schema', str(self.SCHEMA)),
DisplayDataItemMatcher(
'file_pattern',
'some_avro_sink-%(shard_num)05d-of-%(num_shards)05d.end'),
DisplayDataItemMatcher('codec', 'null'),
DisplayDataItemMatcher('compression', 'uncompressed')
]
hc.assert_that(dd.items, hc.contains_inanyorder(*expected_items))
def test_write_display_data(self):
file_name = 'some_avro_sink'
write = avroio.WriteToAvro(file_name, self.SCHEMA)
write.expand(beam.PCollection(beam.Pipeline()))
dd = DisplayData.create_from(write)
expected_items = [
DisplayDataItemMatcher('schema', str(self.SCHEMA)),
DisplayDataItemMatcher(
'file_pattern',
'some_avro_sink-%(shard_num)05d-of-%(num_shards)05d'),
DisplayDataItemMatcher('codec', 'deflate'),
DisplayDataItemMatcher('compression', 'uncompressed')
]
hc.assert_that(dd.items, hc.contains_inanyorder(*expected_items))
def test_read_reentrant_without_splitting(self):
file_name = self._write_data()
source = _FastAvroSource(file_name)
source_test_utils.assert_reentrant_reads_succeed((source, None, None))
def test_read_reantrant_with_splitting(self):
file_name = self._write_data()
source = _FastAvroSource(file_name)
splits = [split for split in source.split(desired_bundle_size=100000)]
assert len(splits) == 1
source_test_utils.assert_reentrant_reads_succeed(
(splits[0].source, splits[0].start_position, splits[0].stop_position))
def test_read_without_splitting_multiple_blocks(self):
file_name = self._write_data(count=12000)
expected_result = self.RECORDS * 2000
self._run_avro_test(file_name, None, False, expected_result)
def test_read_with_splitting_multiple_blocks(self):
file_name = self._write_data(count=12000)
expected_result = self.RECORDS * 2000
self._run_avro_test(file_name, 10000, True, expected_result)
def test_split_points(self):
num_records = 12000
sync_interval = 16000
file_name = self._write_data(count=num_records, sync_interval=sync_interval)
source = _FastAvroSource(file_name)
splits = [split for split in source.split(desired_bundle_size=float('inf'))]
assert len(splits) == 1
range_tracker = splits[0].source.get_range_tracker(
splits[0].start_position, splits[0].stop_position)
split_points_report = []
for _ in splits[0].source.read(range_tracker):
split_points_report.append(range_tracker.split_points())
# There will be a total of num_blocks in the generated test file,
# proportional to number of records in the file divided by syncronization
# interval used by avro during write. Each block has more than 10 records.
num_blocks = int(math.ceil(14.5 * num_records / sync_interval))
assert num_blocks > 1
# When reading records of the first block, range_tracker.split_points()
# should return (0, iobase.RangeTracker.SPLIT_POINTS_UNKNOWN)
self.assertEqual(
split_points_report[:10],
[(0, iobase.RangeTracker.SPLIT_POINTS_UNKNOWN)] * 10)
# When reading records of last block, range_tracker.split_points() should
# return (num_blocks - 1, 1)
self.assertEqual(split_points_report[-10:], [(num_blocks - 1, 1)] * 10)
def test_read_without_splitting_compressed_deflate(self):
file_name = self._write_data(codec='deflate')
expected_result = self.RECORDS
self._run_avro_test(file_name, None, False, expected_result)
def test_read_with_splitting_compressed_deflate(self):
file_name = self._write_data(codec='deflate')
expected_result = self.RECORDS
self._run_avro_test(file_name, 100, True, expected_result)
@unittest.skipIf(snappy is None, 'python-snappy not installed.')
def test_read_without_splitting_compressed_snappy(self):
file_name = self._write_data(codec='snappy')
expected_result = self.RECORDS
self._run_avro_test(file_name, None, False, expected_result)
@unittest.skipIf(snappy is None, 'python-snappy not installed.')
def test_read_with_splitting_compressed_snappy(self):
file_name = self._write_data(codec='snappy')
expected_result = self.RECORDS
self._run_avro_test(file_name, 100, True, expected_result)
def test_read_without_splitting_pattern(self):
pattern = self._write_pattern(3)
expected_result = self.RECORDS * 3
self._run_avro_test(pattern, None, False, expected_result)
def test_read_with_splitting_pattern(self):
pattern = self._write_pattern(3)
expected_result = self.RECORDS * 3
self._run_avro_test(pattern, 100, True, expected_result)
def test_dynamic_work_rebalancing_exhaustive(self):
def compare_split_points(file_name):
source = _FastAvroSource(file_name)
splits = [
split for split in source.split(desired_bundle_size=float('inf'))
]
assert len(splits) == 1
source_test_utils.assert_split_at_fraction_exhaustive(splits[0].source)
# Adjusting block size so that we can perform a exhaustive dynamic
# work rebalancing test that completes within an acceptable amount of time.
file_name = self._write_data(count=5, sync_interval=2)
compare_split_points(file_name)
def test_corrupted_file(self):
file_name = self._write_data()
with open(file_name, 'rb') as f:
data = f.read()
# Corrupt the last character of the file which is also the last character of
# the last sync_marker.
# https://avro.apache.org/docs/current/spec.html#Object+Container+Files
corrupted_data = bytearray(data)
corrupted_data[-1] = (corrupted_data[-1] + 1) % 256
with tempfile.NamedTemporaryFile(delete=False,
prefix=tempfile.template) as f:
f.write(corrupted_data)
corrupted_file_name = f.name
source = _FastAvroSource(corrupted_file_name)
with self.assertRaisesRegex(ValueError, r'expected sync marker'):
source_test_utils.read_from_source(source, None, None)
def test_read_from_avro(self):
path = self._write_data()
with TestPipeline() as p:
assert_that(p | avroio.ReadFromAvro(path), equal_to(self.RECORDS))
def test_read_all_from_avro_single_file(self):
path = self._write_data()
with TestPipeline() as p:
assert_that(
p \
| Create([path]) \
| avroio.ReadAllFromAvro(),
equal_to(self.RECORDS))
def test_read_all_from_avro_many_single_files(self):
path1 = self._write_data()
path2 = self._write_data()
path3 = self._write_data()
with TestPipeline() as p:
assert_that(
p \
| Create([path1, path2, path3]) \
| avroio.ReadAllFromAvro(),
equal_to(self.RECORDS * 3))
def test_read_all_from_avro_file_pattern(self):
file_pattern = self._write_pattern(5)
with TestPipeline() as p:
assert_that(
p \
| Create([file_pattern]) \
| avroio.ReadAllFromAvro(),
equal_to(self.RECORDS * 5))
def test_read_all_from_avro_many_file_patterns(self):
file_pattern1 = self._write_pattern(5)
file_pattern2 = self._write_pattern(2)
file_pattern3 = self._write_pattern(3)
with TestPipeline() as p:
assert_that(
p \
| Create([file_pattern1, file_pattern2, file_pattern3]) \
| avroio.ReadAllFromAvro(),
equal_to(self.RECORDS * 10))
def test_read_all_from_avro_with_filename(self):
file_pattern, file_paths = self._write_pattern(3, return_filenames=True)
result = [(path, record) for path in file_paths for record in self.RECORDS]
with TestPipeline() as p:
assert_that(
p \
| Create([file_pattern]) \
| avroio.ReadAllFromAvro(with_filename=True),
equal_to(result))
class _WriteFilesFn(beam.DoFn):
"""writes a couple of files with deferral."""
COUNT_STATE = CombiningValueStateSpec('count', combine_fn=sum)
def __init__(self, SCHEMA, RECORDS, tempdir):
self._thread = None
self.SCHEMA = SCHEMA
self.RECORDS = RECORDS
self.tempdir = tempdir
def get_expect(self, match_updated_files):
results_file1 = [('file1', x) for x in self.gen_records(1)]
results_file2 = [('file2', x) for x in self.gen_records(3)]
if match_updated_files:
results_file1 += [('file1', x) for x in self.gen_records(2)]
return results_file1 + results_file2
def gen_records(self, count):
return self.RECORDS * (count // len(self.RECORDS)) + self.RECORDS[:(
count % len(self.RECORDS))]
def process(self, element, count_state=beam.DoFn.StateParam(COUNT_STATE)):
counter = count_state.read()
if counter == 0:
count_state.add(1)
with open(FileSystems.join(self.tempdir, 'file1'), 'wb') as f:
writer(f, self.SCHEMA, self.gen_records(2))
with open(FileSystems.join(self.tempdir, 'file2'), 'wb') as f:
writer(f, self.SCHEMA, self.gen_records(3))
# convert dumb key to basename in output
basename = FileSystems.split(element[1][0])[1]
content = element[1][1]
yield basename, content
def test_read_all_continuously_new(self):
with TestPipeline() as pipeline:
tempdir = tempfile.mkdtemp()
writer_fn = self._WriteFilesFn(self.SCHEMA, self.RECORDS, tempdir)
with open(FileSystems.join(tempdir, 'file1'), 'wb') as f:
writer(f, writer_fn.SCHEMA, writer_fn.gen_records(1))
match_pattern = FileSystems.join(tempdir, '*')
interval = 0.5
last = 2
p_read_once = (
pipeline
| 'Continuously read new files' >> avroio.ReadAllFromAvroContinuously(
match_pattern,
with_filename=True,
start_timestamp=Timestamp.now(),
interval=interval,
stop_timestamp=Timestamp.now() + last,
match_updated_files=False)
| 'add dumb key' >> beam.Map(lambda x: (0, x))
| 'Write files on-the-fly' >> beam.ParDo(writer_fn))
assert_that(
p_read_once,
equal_to(writer_fn.get_expect(match_updated_files=False)),
label='assert read new files results')
def test_read_all_continuously_update(self):
with TestPipeline() as pipeline:
tempdir = tempfile.mkdtemp()
writer_fn = self._WriteFilesFn(self.SCHEMA, self.RECORDS, tempdir)
with open(FileSystems.join(tempdir, 'file1'), 'wb') as f:
writer(f, writer_fn.SCHEMA, writer_fn.gen_records(1))
match_pattern = FileSystems.join(tempdir, '*')
interval = 0.5
last = 2
p_read_upd = (
pipeline
| 'Continuously read updated files' >>
avroio.ReadAllFromAvroContinuously(
match_pattern,
with_filename=True,
start_timestamp=Timestamp.now(),
interval=interval,
stop_timestamp=Timestamp.now() + last,
match_updated_files=True)
| 'add dumb key' >> beam.Map(lambda x: (0, x))
| 'Write files on-the-fly' >> beam.ParDo(writer_fn))
assert_that(
p_read_upd,
equal_to(writer_fn.get_expect(match_updated_files=True)),
label='assert read updated files results')
def test_sink_transform(self):
with tempfile.NamedTemporaryFile() as dst:
path = dst.name
with TestPipeline() as p:
# pylint: disable=expression-not-assigned
p \
| beam.Create(self.RECORDS) \
| avroio.WriteToAvro(path, self.SCHEMA,)
with TestPipeline() as p:
# json used for stable sortability
readback = \
p \
| avroio.ReadFromAvro(path + '*', ) \
| beam.Map(json.dumps)
assert_that(readback, equal_to([json.dumps(r) for r in self.RECORDS]))
@unittest.skipIf(snappy is None, 'python-snappy not installed.')
def test_sink_transform_snappy(self):
with tempfile.NamedTemporaryFile() as dst:
path = dst.name
with TestPipeline() as p:
# pylint: disable=expression-not-assigned
p \
| beam.Create(self.RECORDS) \
| avroio.WriteToAvro(
path,
self.SCHEMA,
codec='snappy')
with TestPipeline() as p:
# json used for stable sortability
readback = \
p \
| avroio.ReadFromAvro(path + '*') \
| beam.Map(json.dumps)
assert_that(readback, equal_to([json.dumps(r) for r in self.RECORDS]))
def test_writer_open_and_close(self):
# Create and then close a temp file so we can manually open it later
dst = tempfile.NamedTemporaryFile(delete=False)
dst.close()
schema = parse_schema(json.loads(self.SCHEMA_STRING))
sink = _create_avro_sink(
'some_avro_sink', schema, 'null', '.end', 0, None, 'application/x-avro')
w = sink.open(dst.name)
sink.close(w)
os.unlink(dst.name)
class TestFastAvro(AvroBase, unittest.TestCase):
def __init__(self, methodName='runTest'):
super().__init__(methodName)
self.SCHEMA = parse_schema(json.loads(self.SCHEMA_STRING))
def _write_data(
self,
directory=None,
prefix=tempfile.template,
codec='null',
count=len(RECORDS),
**kwargs):
all_records = self.RECORDS * \
(count // len(self.RECORDS)) + self.RECORDS[:(count % len(self.RECORDS))]
with tempfile.NamedTemporaryFile(delete=False,
dir=directory,
prefix=prefix,
mode='w+b') as f:
writer(f, self.SCHEMA, all_records, codec=codec, **kwargs)
self._temp_files.append(f.name)
return f.name
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
unittest.main()