Hyperparameters are parameters that are set before a machine learning model begins learning. The following hyperparameters are supported by the Amazon SageMaker built-in Image Classification - TensorFlow algorithm. See Tune an Image Classification - TensorFlow model for information on hyperparameter tuning.
Parameter Name | Description |
---|---|
augmentation | Set to "True" to apply augmentation_random_flip , augmentation_random_rotation , and augmentation_random_zoom to the training data. Valid values: string, either: ("True" or "False" ). Default value: "False" . |
augmentation_random_flip | Indicates which flip mode to use for data augmentation when augmentation is set to "True" . For more information, see RandomFlip in the TensorFlow documentation. Valid values: string, any of the following: ("horizontal_and_vertical" , "vertical" , or "None" ). Default value: "horizontal_and_vertical" . |
augmentation_random_rotation | Indicates how much rotation to use for data augmentation when augmentation is set to "True" . Values represent a fraction of 2π. Positive values rotate counterclockwise while negative values rotate clockwise. 0 means no rotation. For more information, see RandomRotation in the TensorFlow documentation. Valid values: float, range: [-1.0 , 1.0 ]. Default value: 0.2 . |
augmentation_random_zoom | Indicates how much vertical zoom to use for data augmentation when augmentation is set to "True" . Positive values zoom out while negative values zoom in. 0 means no zoom. For more information, see RandomZoom in the TensorFlow documentation. Valid values: float, range: [-1.0 , 1.0 ]. Default value: 0.1 . |
batch_size | The batch size for training. For training on instances with multiple GPUs, this batch size is used across the GPUs. Valid values: positive integer. Default value: 32 . |
beta_1 | The beta1 for the "adam" optimizer. Represents the exponential decay rate for the first moment estimates. Ignored for other optimizers. Valid values: float, range: [0.0 , 1.0 ]. Default value: 0.9 . |
beta_2 | The beta2 for the "adam" optimizer. Represents the exponential decay rate for the second moment estimates. Ignored for other optimizers. Valid values: float, range: [0.0 , 1.0 ]. Default value: 0.999 . |
binary_mode | When binary_mode is set to "True" , the model returns a single probability number for the positive class and can use additional eval_metric options. Use only for binary classification problems. Valid values: string, either: ("True" or "False" ). Default value: "False" . |
dropout_rate | The dropout rate for the dropout layer in the top classification layer. Valid values: float, range: [0.0 , 1.0 ]. Default value: 0.2 |
early_stopping | Set to "True" to use early stopping logic during training. If "False" , early stopping is not used. Valid values: string, either: ("True" or "False" ). Default value: "False" . |
early_stopping_min_delta | The minimum change needed to qualify as an improvement. An absolute change less than the value of early_stopping_min_delta does not qualify as improvement. Used only when early_stopping is set to "True".Valid values: float, range: [0.0 , 1.0 ].Default value: 0.0 . |
early_stopping_patience | The number of epochs to continue training with no improvement. Used only when early_stopping is set to "True" . Valid values: positive integer. Default value: 5 . |
epochs | The number of training epochs. Valid values: positive integer. Default value: 3 . |
epsilon | The epsilon for "adam" , "rmsprop" , "adadelta" , and "adagrad" optimizers. Usually set to a small value to avoid division by 0. Ignored for other optimizers. Valid values: float, range: [0.0 , 1.0 ]. Default value: 1e-7 . |
eval_metric | If binary_mode is set to "False" , eval_metric can only be "accuracy" . If binary_mode is "True" , select any of the valid values. For more information, see Metrics in the TensorFlow documentation. Valid values: string, any of the following: ("accuracy" , "precision" , "recall" , "auc" , or "prc" ). Default value: "accuracy" . |
image_resize_interpolation | Indicates interpolation method used when resizing images. For more information, see image.resize in the TensorFlow documentation. Valid values: string, any of the following: ("bilinear" , "nearest" , "bicubic" , "area" , "lanczos3" , "lanczos5" , "gaussian" , or "mitchellcubic" ). Default value: "bilinear" . |
initial_accumulator_value | The starting value for the accumulators, or the per-parameter momentum values, for the "adagrad" optimizer. Ignored for other optimizers. Valid values: float, range: [0.0 , 1.0 ]. Default value: 0.0001 . |
label_smoothing | Indicates how much to relax the confidence on label values. For example, if label_smoothing is 0.1 , then non-target labels are 0.1/num_classes and target labels are 0.9+0.1/num_classes . Valid values: float, range: [0.0 , 1.0 ]. Default value: 0.1 . |
learning_rate | The optimizer learning rate. Valid values: float, range: [0.0 , 1.0 ].Default value: 0.001 . |
momentum | The momentum for "sgd" , "nesterov" , and "rmsprop" optimizers. Ignored for other optimizers. Valid values: float, range: [0.0 , 1.0 ]. Default value: 0.9 . |
optimizer | The optimizer type. For more information, see Optimizers in the TensorFlow documentation. Valid values: string, any of the following: ("adam" , "sgd" , "nesterov" , "rmsprop" , "adagrad" , "adadelta" ). Default value: "adam" . |
regularizers_l2 | The L2 regularization factor for the dense layer in the classification layer. Valid values: float, range: [0.0 , 1.0 ]. Default value: .0001 . |
reinitialize_top_layer | If set to "Auto" , the top classification layer parameters are re-initialized during fine-tuning. For incremental training, top classification layer parameters are not re-initialized unless set to "True" . Valid values: string, any of the following: ("Auto" , "True" or "False" ). Default value: "Auto" . |
rho | The discounting factor for the gradient of the "adadelta" and "rmsprop" optimizers. Ignored for other optimizers. Valid values: float, range: [0.0 , 1.0 ]. Default value: 0.95 . |
train_only_on_top_layer | If "True" , only the top classification layer parameters are fine-tuned. If "False" , all model parameters are fine-tuned. Valid values: string, either: ("True" or "False" ). Default value: "False" . |