Skip to content

One Warehouse for Analytics, Search, AI. Snowflake + Elasticsearch + Vector DB — rebuilt from scratch. Unified architecture on your S3.

License

Notifications You must be signed in to change notification settings

databendlabs/databend

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33,912 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Databend

Enterprise Data Warehouse for AI Agents

Large-scale analytics, vector search, full-text search — with flexible agent orchestration and secure Python UDF sandboxes. Built for enterprise AI workloads.


databend

💡 Why Databend?

Databend is an open-source enterprise data warehouse built in Rust.

Core capabilities: Analytics, vector search, full-text search, auto schema evolution — unified in one engine.

Agent-ready: Sandbox UDFs for agent logic, SQL for orchestration, transactions for reliability, branching for safe experimentation on production data.

📊 Core Engine
Analytics, vector search, full-text search, auto schema evolution, transactions.
🤖 Agent-Ready
Sandbox UDF + SQL orchestration. Build and run agents on your enterprise data.
🏢 Enterprise Scale
Elastic compute, cloud native. S3/Azure/GCS.
🌿 Branching
Git-like data versioning. Agents safely operate on production snapshots.

Databend Architecture

⚡ Quick Start

1. Cloud (Recommended)

Start for free on Databend Cloud — Production-ready in 60 seconds.

2. Local (Python)

Ideal for development and testing:

pip install databend
import databend
ctx = databend.SessionContext()
ctx.sql("SELECT 'Hello, Databend!'").show()

3. Docker

Run the full warehouse locally:

docker run -p 8000:8000 datafuselabs/databend

🤖 Agent-Ready Architecture

Databend's Sandbox UDF enables flexible agent orchestration with a three-layer architecture:

  • Control Plane: Resource scheduling, permission validation, sandbox lifecycle management
  • Execution Plane (Databend): SQL orchestration, issues requests via Arrow Flight
  • Compute Plane (Sandbox Workers): Isolated sandboxes running your agent logic
-- Define your agent logic
CREATE FUNCTION my_agent(input STRING) RETURNS STRING
LANGUAGE python HANDLER = 'run'
AS $$
def run(input):
    # Your agent logic: LLM calls, tool use, reasoning...
    return response
$$;

-- Orchestrate agents with SQL
SELECT my_agent(question) FROM tasks;

🚀 Use Cases

  • AI Agents: Sandbox UDF + SQL orchestration + branching for safe operations
  • Analytics & BI: Large-scale SQL analytics — Learn more
  • Search & RAG: Vector + full-text search — Learn more

🤝 Community & Support

Contributors are immortalized in the system.contributors table 🏆

📄 License

Apache 2.0 + Elastic 2.0 | Licensing FAQ


Enterprise warehouse, agent ready
🌐 Website🐦 Twitter