-
Notifications
You must be signed in to change notification settings - Fork 359
/
Copy pathpredictor.py
90 lines (76 loc) · 3 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# -*- coding: utf-8 -*-
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import joblib
import numpy as np
import os
import pickle
from google.cloud.aiplatform.constants import prediction
from google.cloud.aiplatform.utils import prediction_utils
from google.cloud.aiplatform.prediction.predictor import Predictor
class SklearnPredictor(Predictor):
"""Default Predictor implementation for Sklearn models."""
def __init__(self):
return
def load(self, artifacts_uri: str) -> None:
"""Loads the model artifact.
Args:
artifacts_uri (str):
Required. The value of the environment variable AIP_STORAGE_URI.
Raises:
ValueError: If there's no required model files provided in the artifacts
uri.
"""
prediction_utils.download_model_artifacts(artifacts_uri)
if os.path.exists(prediction.MODEL_FILENAME_JOBLIB):
self._model = joblib.load(prediction.MODEL_FILENAME_JOBLIB)
elif os.path.exists(prediction.MODEL_FILENAME_PKL):
self._model = pickle.load(open(prediction.MODEL_FILENAME_PKL, "rb"))
else:
valid_filenames = [
prediction.MODEL_FILENAME_JOBLIB,
prediction.MODEL_FILENAME_PKL,
]
raise ValueError(
f"One of the following model files must be provided: {valid_filenames}."
)
def preprocess(self, prediction_input: dict) -> np.ndarray:
"""Converts the request body to a numpy array before prediction.
Args:
prediction_input (dict):
Required. The prediction input that needs to be preprocessed.
Returns:
The preprocessed prediction input.
"""
instances = prediction_input["instances"]
return np.asarray(instances)
def predict(self, instances: np.ndarray) -> np.ndarray:
"""Performs prediction.
Args:
instances (np.ndarray):
Required. The instance(s) used for performing prediction.
Returns:
Prediction results.
"""
return self._model.predict(instances)
def postprocess(self, prediction_results: np.ndarray) -> dict:
"""Converts numpy array to a dict.
Args:
prediction_results (np.ndarray):
Required. The prediction results.
Returns:
The postprocessed prediction results.
"""
return {"predictions": prediction_results.tolist()}