-
-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathstrformat.nim
788 lines (671 loc) · 26.8 KB
/
strformat.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
#
#
# Nim's Runtime Library
# (c) Copyright 2017 Nim contributors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
##[
String `interpolation`:idx: / `format`:idx: inspired by
Python's f-strings.
# `fmt` vs. `&`
You can use either `fmt` or the unary `&` operator for formatting. The
difference between them is subtle but important.
The `fmt"{expr}"` syntax is more aesthetically pleasing, but it hides a small
gotcha. The string is a
`generalized raw string literal <manual.html#lexical-analysis-generalized-raw-string-literals>`_.
This has some surprising effects:
]##
runnableExamples:
let msg = "hello"
assert fmt"{msg}\n" == "hello\\n"
##[
Because the literal is a raw string literal, the `\n` is not interpreted as
an escape sequence.
There are multiple ways to get around this, including the use of the `&` operator:
]##
runnableExamples:
let msg = "hello"
assert &"{msg}\n" == "hello\n"
assert fmt"{msg}{'\n'}" == "hello\n"
assert fmt("{msg}\n") == "hello\n"
assert "{msg}\n".fmt == "hello\n"
##[
The choice of style is up to you.
# Formatting strings
]##
runnableExamples:
assert &"""{"abc":>4}""" == " abc"
assert &"""{"abc":<4}""" == "abc "
##[
# Formatting floats
]##
runnableExamples:
assert fmt"{-12345:08}" == "-0012345"
assert fmt"{-1:3}" == " -1"
assert fmt"{-1:03}" == "-01"
assert fmt"{16:#X}" == "0x10"
assert fmt"{123.456}" == "123.456"
assert fmt"{123.456:>9.3f}" == " 123.456"
assert fmt"{123.456:9.3f}" == " 123.456"
assert fmt"{123.456:9.4f}" == " 123.4560"
assert fmt"{123.456:>9.0f}" == " 123."
assert fmt"{123.456:<9.4f}" == "123.4560 "
assert fmt"{123.456:e}" == "1.234560e+02"
assert fmt"{123.456:>13e}" == " 1.234560e+02"
assert fmt"{123.456:13e}" == " 1.234560e+02"
##[
# Expressions
]##
runnableExamples:
let x = 3.14
assert fmt"{(if x!=0: 1.0/x else: 0):.5}" == "0.31847"
assert fmt"""{(block:
var res: string
for i in 1..15:
res.add (if i mod 15 == 0: "FizzBuzz"
elif i mod 5 == 0: "Buzz"
elif i mod 3 == 0: "Fizz"
else: $i) & " "
res)}""" == "1 2 Fizz 4 Buzz Fizz 7 8 Fizz Buzz 11 Fizz 13 14 FizzBuzz "
##[
# Debugging strings
`fmt"{expr=}"` expands to `fmt"expr={expr}"` namely the text of the expression,
an equal sign and the results of evaluated expression.
]##
runnableExamples:
assert fmt"{123.456=}" == "123.456=123.456"
assert fmt"{123.456=:>9.3f}" == "123.456= 123.456"
let x = "hello"
assert fmt"{x=}" == "x=hello"
assert fmt"{x =}" == "x =hello"
let y = 3.1415926
assert fmt"{y=:.2f}" == fmt"y={y:.2f}"
assert fmt"{y=}" == fmt"y={y}"
assert fmt"{y = : <8}" == fmt"y = 3.14159 "
proc hello(a: string, b: float): int = 12
assert fmt"{hello(x, y) = }" == "hello(x, y) = 12"
assert fmt"{x.hello(y) = }" == "x.hello(y) = 12"
assert fmt"{hello x, y = }" == "hello x, y = 12"
##[
Note that it is space sensitive:
]##
runnableExamples:
let x = "12"
assert fmt"{x=}" == "x=12"
assert fmt"{x =:}" == "x =12"
assert fmt"{x =}" == "x =12"
assert fmt"{x= :}" == "x= 12"
assert fmt"{x= }" == "x= 12"
assert fmt"{x = :}" == "x = 12"
assert fmt"{x = }" == "x = 12"
assert fmt"{x = :}" == "x = 12"
assert fmt"{x = }" == "x = 12"
##[
# Implementation details
An expression like `&"{key} is {value:arg} {{z}}"` is transformed into:
```nim
var temp = newStringOfCap(educatedCapGuess)
temp.formatValue(key, "")
temp.add(" is ")
temp.formatValue(value, arg)
temp.add(" {z}")
temp
```
Parts of the string that are enclosed in the curly braces are interpreted
as Nim code. To escape a `{` or `}`, double it.
Within a curly expression, however, `{`, `}`, must be escaped with a backslash.
To enable evaluating Nim expressions within curlies, colons inside parentheses
do not need to be escaped.
]##
runnableExamples:
let x = "hello"
assert fmt"""{ "\{(" & x & ")\}" }""" == "{(hello)}"
assert fmt"""{{({ x })}}""" == "{(hello)}"
assert fmt"""{ $(\{x:1,"world":2\}) }""" == """[("hello", 1), ("world", 2)]"""
##[
`&` delegates most of the work to an open overloaded set
of `formatValue` procs. The required signature for a type `T` that supports
formatting is usually `proc formatValue(result: var string; x: T; specifier: string)`.
The subexpression after the colon
(`arg` in `&"{key} is {value:arg} {{z}}"`) is optional. It will be passed as
the last argument to `formatValue`. When the colon with the subexpression it is
left out, an empty string will be taken instead.
For strings and numeric types the optional argument is a so-called
"standard format specifier".
# Standard format specifiers for strings, integers and floats
The general form of a standard format specifier is:
[[fill]align][sign][#][0][minimumwidth][.precision][type]
The square brackets `[]` indicate an optional element.
The optional `align` flag can be one of the following:
`<`
: Forces the field to be left-aligned within the available
space. (This is the default for strings.)
`>`
: Forces the field to be right-aligned within the available space.
(This is the default for numbers.)
`^`
: Forces the field to be centered within the available space.
Note that unless a minimum field width is defined, the field width
will always be the same size as the data to fill it, so that the alignment
option has no meaning in this case.
The optional `fill` character defines the character to be used to pad
the field to the minimum width. The fill character, if present, must be
followed by an alignment flag.
The `sign` option is only valid for numeric types, and can be one of the following:
================= ====================================================
Sign Meaning
================= ====================================================
`+` Indicates that a sign should be used for both
positive as well as negative numbers.
`-` Indicates that a sign should be used only for
negative numbers (this is the default behavior).
(space) Indicates that a leading space should be used on
positive numbers.
================= ====================================================
If the `#` character is present, integers use the 'alternate form' for formatting.
This means that binary, octal and hexadecimal output will be prefixed
with `0b`, `0o` and `0x`, respectively.
`width` is a decimal integer defining the minimum field width. If not specified,
then the field width will be determined by the content.
If the width field is preceded by a zero (`0`) character, this enables
zero-padding.
The `precision` is a decimal number indicating how many digits should be displayed
after the decimal point in a floating point conversion. For non-numeric types the
field indicates the maximum field size - in other words, how many characters will
be used from the field content. The precision is ignored for integer conversions.
Finally, the `type` determines how the data should be presented.
The available integer presentation types are:
================= ====================================================
Type Result
================= ====================================================
`b` Binary. Outputs the number in base 2.
`d` Decimal Integer. Outputs the number in base 10.
`o` Octal format. Outputs the number in base 8.
`x` Hex format. Outputs the number in base 16, using
lower-case letters for the digits above 9.
`X` Hex format. Outputs the number in base 16, using
uppercase letters for the digits above 9.
(None) The same as `d`.
================= ====================================================
The available floating point presentation types are:
================= ====================================================
Type Result
================= ====================================================
`e` Exponent notation. Prints the number in scientific
notation using the letter `e` to indicate the
exponent.
`E` Exponent notation. Same as `e` except it converts
the number to uppercase.
`f` Fixed point. Displays the number as a fixed-point
number.
`F` Fixed point. Same as `f` except it converts the
number to uppercase.
`g` General format. This prints the number as a
fixed-point number, unless the number is too
large, in which case it switches to `e`
exponent notation.
`G` General format. Same as `g` except it switches to `E`
if the number gets to large.
`i` Complex General format. This is only supported for
complex numbers, which it prints using the mathematical
(RE+IMj) format. The real and imaginary parts are printed
using the general format `g` by default, but it is
possible to combine this format with one of the other
formats (e.g `jf`).
(None) Similar to `g`, except that it prints at least one
digit after the decimal point.
================= ====================================================
# Limitations
Because of the well defined order how templates and macros are
expanded, strformat cannot expand template arguments:
```nim
template myTemplate(arg: untyped): untyped =
echo "arg is: ", arg
echo &"--- {arg} ---"
let x = "abc"
myTemplate(x)
```
First the template `myTemplate` is expanded, where every identifier
`arg` is substituted with its argument. The `arg` inside the
format string is not seen by this process, because it is part of a
quoted string literal. It is not an identifier yet. Then the strformat
macro creates the `arg` identifier from the string literal, an
identifier that cannot be resolved anymore.
The workaround for this is to bind the template argument to a new local variable.
```nim
template myTemplate(arg: untyped): untyped =
block:
let arg1 {.inject.} = arg
echo "arg is: ", arg1
echo &"--- {arg1} ---"
```
The use of `{.inject.}` here is necessary again because of template
expansion order and hygienic templates. But since we generally want to
keep the hygiene of `myTemplate`, and we do not want `arg1`
to be injected into the context where `myTemplate` is expanded,
everything is wrapped in a `block`.
# Future directions
A curly expression with commas in it like `{x, argA, argB}` could be
transformed to `formatValue(result, x, argA, argB)` in order to support
formatters that do not need to parse a custom language within a custom
language but instead prefer to use Nim's existing syntax. This would also
help with readability, since there is only so much you can cram into
single letter DSLs.
]##
import std/[macros, parseutils, unicode]
import std/strutils except format
when defined(nimPreviewSlimSystem):
import std/assertions
proc mkDigit(v: int, typ: char): string {.inline.} =
assert(v < 26)
if v < 10:
result = $chr(ord('0') + v)
else:
result = $chr(ord(if typ == 'x': 'a' else: 'A') + v - 10)
proc alignString*(s: string, minimumWidth: int; align = '\0'; fill = ' '): string =
## Aligns `s` using the `fill` char.
## This is only of interest if you want to write a custom `format` proc that
## should support the standard format specifiers.
if minimumWidth == 0:
result = s
else:
let sRuneLen = if s.validateUtf8 == -1: s.runeLen else: s.len
let toFill = minimumWidth - sRuneLen
if toFill <= 0:
result = s
elif align == '<' or align == '\0':
result = s & repeat(fill, toFill)
elif align == '^':
let half = toFill div 2
result = repeat(fill, half) & s & repeat(fill, toFill - half)
else:
result = repeat(fill, toFill) & s
type
StandardFormatSpecifier* = object ## Type that describes "standard format specifiers".
fill*, align*: char ## Desired fill and alignment.
sign*: char ## Desired sign.
alternateForm*: bool ## Whether to prefix binary, octal and hex numbers
## with `0b`, `0o`, `0x`.
padWithZero*: bool ## Whether to pad with zeros rather than spaces.
minimumWidth*, precision*: int ## Desired minimum width and precision.
typ*: char ## Type like 'f', 'g' or 'd'.
endPosition*: int ## End position in the format specifier after
## `parseStandardFormatSpecifier` returned.
proc formatInt(n: SomeNumber; radix: int; spec: StandardFormatSpecifier): string =
## Converts `n` to a string. If `n` is `SomeFloat`, it casts to `int64`.
## Conversion is done using `radix`. If result's length is less than
## `minimumWidth`, it aligns result to the right or left (depending on `a`)
## with the `fill` char.
when n is SomeUnsignedInt:
var v = n.uint64
let negative = false
else:
let n = n.int64
let negative = n < 0
var v =
if negative:
# `uint64(-n)`, but accounts for `n == low(int64)`
uint64(not n) + 1
else:
uint64(n)
var xx = ""
if spec.alternateForm:
case spec.typ
of 'X': xx = "0x"
of 'x': xx = "0x"
of 'b': xx = "0b"
of 'o': xx = "0o"
else: discard
if v == 0:
result = "0"
else:
result = ""
while v > typeof(v)(0):
let d = v mod typeof(v)(radix)
v = v div typeof(v)(radix)
result.add(mkDigit(d.int, spec.typ))
for idx in 0..<(result.len div 2):
swap result[idx], result[result.len - idx - 1]
if spec.padWithZero:
let sign = negative or spec.sign != '-'
let toFill = spec.minimumWidth - result.len - xx.len - ord(sign)
if toFill > 0:
result = repeat('0', toFill) & result
if negative:
result = "-" & xx & result
elif spec.sign != '-':
result = spec.sign & xx & result
else:
result = xx & result
if spec.align == '<':
for i in result.len..<spec.minimumWidth:
result.add(spec.fill)
else:
let toFill = spec.minimumWidth - result.len
if spec.align == '^':
let half = toFill div 2
result = repeat(spec.fill, half) & result & repeat(spec.fill, toFill - half)
else:
if toFill > 0:
result = repeat(spec.fill, toFill) & result
proc parseStandardFormatSpecifier*(s: string; start = 0;
ignoreUnknownSuffix = false): StandardFormatSpecifier =
## An exported helper proc that parses the "standard format specifiers",
## as specified by the grammar:
##
## [[fill]align][sign][#][0][minimumwidth][.precision][type]
##
## This is only of interest if you want to write a custom `format` proc that
## should support the standard format specifiers. If `ignoreUnknownSuffix` is true,
## an unknown suffix after the `type` field is not an error.
const alignChars = {'<', '>', '^'}
result = StandardFormatSpecifier(fill: ' ', align: '\0', sign: '-')
var i = start
if i + 1 < s.len and s[i+1] in alignChars:
result.fill = s[i]
result.align = s[i+1]
inc i, 2
elif i < s.len and s[i] in alignChars:
result.align = s[i]
inc i
if i < s.len and s[i] in {'-', '+', ' '}:
result.sign = s[i]
inc i
if i < s.len and s[i] == '#':
result.alternateForm = true
inc i
if i + 1 < s.len and s[i] == '0' and s[i+1] in {'0'..'9'}:
result.padWithZero = true
inc i
let parsedLength = parseSaturatedNatural(s, result.minimumWidth, i)
inc i, parsedLength
if i < s.len and s[i] == '.':
inc i
let parsedLengthB = parseSaturatedNatural(s, result.precision, i)
inc i, parsedLengthB
else:
result.precision = -1
if i < s.len and s[i] in {'A'..'Z', 'a'..'z'}:
result.typ = s[i]
inc i
result.endPosition = i
if i != s.len and not ignoreUnknownSuffix:
raise newException(ValueError,
"invalid format string, cannot parse: " & s[i..^1])
proc toRadix(typ: char): int =
case typ
of 'x', 'X': 16
of 'd', '\0': 10
of 'o': 8
of 'b': 2
else:
raise newException(ValueError,
"invalid type in format string for number, expected one " &
" of 'x', 'X', 'b', 'd', 'o' but got: " & typ)
proc formatValue*[T: SomeInteger](result: var string; value: T;
specifier: static string) =
## Standard format implementation for `SomeInteger`. It makes little
## sense to call this directly, but it is required to exist
## by the `&` macro.
when specifier.len == 0:
result.add $value
else:
const
spec = parseStandardFormatSpecifier(specifier)
radix = toRadix(spec.typ)
result.add formatInt(value, radix, spec)
proc formatValue*[T: SomeInteger](result: var string; value: T;
specifier: string) =
## Standard format implementation for `SomeInteger`. It makes little
## sense to call this directly, but it is required to exist
## by the `&` macro.
if specifier.len == 0:
result.add $value
else:
let
spec = parseStandardFormatSpecifier(specifier)
radix = toRadix(spec.typ)
result.add formatInt(value, radix, spec)
proc formatFloat(
result: var string, value: SomeFloat, fmode: FloatFormatMode,
spec: StandardFormatSpecifier) =
var f = formatBiggestFloat(value, fmode, spec.precision)
var sign = false
if value >= 0.0:
if spec.sign != '-':
sign = true
if value == 0.0:
if 1.0 / value == Inf:
# only insert the sign if value != negZero
f.insert($spec.sign, 0)
else:
f.insert($spec.sign, 0)
else:
sign = true
if spec.padWithZero:
var signStr = ""
if sign:
signStr = $f[0]
f = f[1..^1]
let toFill = spec.minimumWidth - f.len - ord(sign)
if toFill > 0:
f = repeat('0', toFill) & f
if sign:
f = signStr & f
# the default for numbers is right-alignment:
let align = if spec.align == '\0': '>' else: spec.align
let res = alignString(f, spec.minimumWidth, align, spec.fill)
if spec.typ in {'A'..'Z'}:
result.add toUpperAscii(res)
else:
result.add res
proc toFloatFormatMode(typ: char): FloatFormatMode =
case typ
of 'e', 'E': ffScientific
of 'f', 'F': ffDecimal
of 'g', 'G': ffDefault
of '\0': ffDefault
else:
raise newException(ValueError,
"invalid type in format string for number, expected one " &
" of 'e', 'E', 'f', 'F', 'g', 'G' but got: " & typ)
proc formatValue*(result: var string; value: SomeFloat; specifier: static string) =
## Standard format implementation for `SomeFloat`. It makes little
## sense to call this directly, but it is required to exist
## by the `&` macro.
when specifier.len == 0:
result.add $value
else:
const
spec = parseStandardFormatSpecifier(specifier)
fmode = toFloatFormatMode(spec.typ)
formatFloat(result, value, fmode, spec)
proc formatValue*(result: var string; value: SomeFloat; specifier: string) =
## Standard format implementation for `SomeFloat`. It makes little
## sense to call this directly, but it is required to exist
## by the `&` macro.
if specifier.len == 0:
result.add $value
else:
let
spec = parseStandardFormatSpecifier(specifier)
fmode = toFloatFormatMode(spec.typ)
formatFloat(result, value, fmode, spec)
proc formatValue*(result: var string; value: string; specifier: static string) =
## Standard format implementation for `string`. It makes little
## sense to call this directly, but it is required to exist
## by the `&` macro.
const spec = parseStandardFormatSpecifier(specifier)
var value =
when spec.typ in {'s', '\0'}: value
else: static:
raise newException(ValueError,
"invalid type in format string for string, expected 's', but got " &
spec.typ)
when spec.precision != -1:
if spec.precision < runeLen(value):
const precision = cast[Natural](spec.precision)
setLen(value, Natural(runeOffset(value, precision)))
result.add alignString(value, spec.minimumWidth, spec.align, spec.fill)
proc formatValue*(result: var string; value: string; specifier: string) =
## Standard format implementation for `string`. It makes little
## sense to call this directly, but it is required to exist
## by the `&` macro.
let spec = parseStandardFormatSpecifier(specifier)
var value =
if spec.typ in {'s', '\0'}: value
else:
raise newException(ValueError,
"invalid type in format string for string, expected 's', but got " &
spec.typ)
if spec.precision != -1:
if spec.precision < runeLen(value):
let precision = cast[Natural](spec.precision)
setLen(value, Natural(runeOffset(value, precision)))
result.add alignString(value, spec.minimumWidth, spec.align, spec.fill)
proc formatValue[T: not SomeInteger](result: var string; value: T; specifier: static string) =
mixin `$`
formatValue(result, $value, specifier)
proc formatValue[T: not SomeInteger](result: var string; value: T; specifier: string) =
mixin `$`
formatValue(result, $value, specifier)
template formatValue(result: var string; value: char; specifier: string) =
result.add value
template formatValue(result: var string; value: cstring; specifier: string) =
result.add value
proc strformatImpl(f: string; openChar, closeChar: char,
lineInfoNode: NimNode = nil): NimNode =
template missingCloseChar =
error("invalid format string: missing closing character '" & closeChar & "'")
if openChar == ':' or closeChar == ':':
error "openChar and closeChar must not be ':'"
var i = 0
let res = genSym(nskVar, "fmtRes")
result = newNimNode(nnkStmtListExpr, lineInfoNode)
# XXX: https://github.com/nim-lang/Nim/issues/8405
# When compiling with -d:useNimRtl, certain procs such as `count` from the strutils
# module are not accessible at compile-time:
let expectedGrowth = when defined(useNimRtl): 0 else: count(f, openChar) * 10
result.add newVarStmt(res, newCall(bindSym"newStringOfCap",
newLit(f.len + expectedGrowth)))
var strlit = ""
while i < f.len:
if f[i] == openChar:
inc i
if f[i] == openChar:
inc i
strlit.add openChar
else:
if strlit.len > 0:
result.add newCall(bindSym"add", res, newLit(strlit))
strlit = ""
var subexpr = ""
var inParens = 0
var inSingleQuotes = false
var inDoubleQuotes = false
template notEscaped:bool = f[i-1]!='\\'
while i < f.len and f[i] != closeChar and (f[i] != ':' or inParens != 0):
case f[i]
of '\\':
if i < f.len-1 and f[i+1] in {openChar,closeChar,':'}: inc i
of '\'':
if not inDoubleQuotes and notEscaped: inSingleQuotes = not inSingleQuotes
of '\"':
if notEscaped: inDoubleQuotes = not inDoubleQuotes
of '(':
if not (inSingleQuotes or inDoubleQuotes): inc inParens
of ')':
if not (inSingleQuotes or inDoubleQuotes): dec inParens
of '=':
let start = i
inc i
i += f.skipWhitespace(i)
if i == f.len:
missingCloseChar
if f[i] == closeChar or f[i] == ':':
result.add newCall(bindSym"add", res, newLit(subexpr & f[start ..< i]))
else:
subexpr.add f[start ..< i]
continue
else: discard
subexpr.add f[i]
inc i
if i == f.len:
missingCloseChar
var x: NimNode = nil
try:
x = parseExpr(subexpr)
except ValueError as e:
error("could not parse `$#` in `$#`.\n$#" % [subexpr, f, e.msg], lineInfoNode)
x.copyLineInfo(lineInfoNode)
let formatSym = bindSym("formatValue", brOpen)
var options = ""
if f[i] == ':':
inc i
while i < f.len and f[i] != closeChar:
options.add f[i]
inc i
if i == f.len:
missingCloseChar
if f[i] == closeChar:
inc i
result.add newCall(formatSym, res, x, newLit(options))
elif f[i] == closeChar:
if i<f.len-1 and f[i+1] == closeChar:
strlit.add closeChar
inc i, 2
else:
raiseAssert "invalid format string: '$1' instead of '$1$1'" % $closeChar
else:
strlit.add f[i]
inc i
if strlit.len > 0:
result.add newCall(bindSym"add", res, newLit(strlit))
result.add res
# workaround for #20381
var blockExpr = newNimNode(nnkBlockExpr, lineInfoNode)
blockExpr.add(newEmptyNode())
blockExpr.add(result)
result = blockExpr
when defined(debugFmtDsl):
echo repr result
macro fmt(pattern: static string; openChar: static char, closeChar: static char, lineInfoNode: untyped): string =
## version of `fmt` with dummy untyped param for line info
strformatImpl(pattern, openChar, closeChar, lineInfoNode)
when not defined(nimHasCallsitePragma):
{.pragma: callsite.}
template fmt*(pattern: static string; openChar: static char, closeChar: static char): string {.callsite.} =
## Interpolates `pattern` using symbols in scope.
runnableExamples:
let x = 7
assert "var is {x * 2}".fmt == "var is 14"
assert "var is {{x}}".fmt == "var is {x}" # escape via doubling
const s = "foo: {x}"
assert s.fmt == "foo: 7" # also works with const strings
assert fmt"\n" == r"\n" # raw string literal
assert "\n".fmt == "\n" # regular literal (likewise with `fmt("\n")` or `fmt "\n"`)
runnableExamples:
# custom `openChar`, `closeChar`
let x = 7
assert "<x>".fmt('<', '>') == "7"
assert "<<<x>>>".fmt('<', '>') == "<7>"
assert "`x`".fmt('`', '`') == "7"
fmt(pattern, openChar, closeChar, dummyForLineInfo)
template fmt*(pattern: static string): untyped {.callsite.} =
## Alias for `fmt(pattern, '{', '}')`.
fmt(pattern, '{', '}', dummyForLineInfo)
template `&`*(pattern: string{lit}): string {.callsite.} =
## `&pattern` is the same as `pattern.fmt`.
## For a specification of the `&` macro, see the module level documentation.
# pending bug #18275, bug #18278, use `pattern: static string`
# consider deprecating this, it's redundant with `fmt` and `fmt` is strictly
# more flexible, readable (no confusion with the binary `&`), self-documenting,
# not to mention #18275, bug #18278.
runnableExamples:
let x = 7
assert &"{x}\n" == "7\n" # regular string literal
assert &"{x}\n" == "{x}\n".fmt # `fmt` can be used instead
assert &"{x}\n" != fmt"{x}\n" # see `fmt` docs, this would use a raw string literal
fmt(pattern, '{', '}', dummyForLineInfo)