-
Notifications
You must be signed in to change notification settings - Fork 3.8k
/
Copy pathrandlanet_segmentation.py
203 lines (161 loc) · 6.55 KB
/
randlanet_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""An implementation of RandLA-Net based on the `"RandLA-Net: Efficient
Semantic Segmentation of Large-Scale Point Clouds"
<https://arxiv.org/abs/1911.11236>`_ paper.
"""
import os.path as osp
import torch
import torch.nn.functional as F
from randlanet_classification import DilatedResidualBlock, SharedMLP, decimate
from torch.nn import Linear
from torchmetrics.functional import jaccard_index
from tqdm import tqdm
import torch_geometric.transforms as T
from torch_geometric.datasets import ShapeNet
from torch_geometric.loader import DataLoader
from torch_geometric.nn import knn_interpolate
from torch_geometric.typing import WITH_TORCH_CLUSTER
from torch_geometric.utils import scatter
if not WITH_TORCH_CLUSTER:
quit("This example requires 'torch-cluster'")
category = 'Airplane' # Pass in `None` to train on all categories.
category_num_classes = 4 # 4 for Airplane - see ShapeNet for details
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'ShapeNet')
transform = T.Compose([
T.RandomJitter(0.01),
T.RandomRotate(15, axis=0),
T.RandomRotate(15, axis=1),
T.RandomRotate(15, axis=2),
])
pre_transform = T.NormalizeScale()
train_dataset = ShapeNet(
path,
category,
split='trainval',
transform=transform,
pre_transform=pre_transform,
)
test_dataset = ShapeNet(
path,
category,
split='test',
pre_transform=pre_transform,
)
train_loader = DataLoader(train_dataset, 12, shuffle=True, num_workers=6)
test_loader = DataLoader(test_dataset, 12, shuffle=False, num_workers=6)
class FPModule(torch.nn.Module):
"""Upsampling with a skip connection."""
def __init__(self, k, nn):
super().__init__()
self.k = k
self.nn = nn
def forward(self, x, pos, batch, x_skip, pos_skip, batch_skip):
x = knn_interpolate(x, pos, pos_skip, batch, batch_skip, k=self.k)
x = torch.cat([x, x_skip], dim=1)
x = self.nn(x)
return x, pos_skip, batch_skip
class Net(torch.nn.Module):
def __init__(
self,
num_features: int,
num_classes: int,
decimation: int = 4,
num_neighbors: int = 16,
return_logits: bool = False,
):
super().__init__()
self.decimation = decimation
# An option to return logits instead of log probabilities:
self.return_logits = return_logits
# Authors use 8, which is a bottleneck
# for the final MLP, and also when num_classes>8
# or num_features>8.
d_bottleneck = max(32, num_classes, num_features)
self.fc0 = Linear(num_features, d_bottleneck)
self.block1 = DilatedResidualBlock(num_neighbors, d_bottleneck, 32)
self.block2 = DilatedResidualBlock(num_neighbors, 32, 128)
self.block3 = DilatedResidualBlock(num_neighbors, 128, 256)
self.block4 = DilatedResidualBlock(num_neighbors, 256, 512)
self.mlp_summit = SharedMLP([512, 512])
self.fp4 = FPModule(1, SharedMLP([512 + 256, 256]))
self.fp3 = FPModule(1, SharedMLP([256 + 128, 128]))
self.fp2 = FPModule(1, SharedMLP([128 + 32, 32]))
self.fp1 = FPModule(1, SharedMLP([32 + 32, d_bottleneck]))
self.mlp_classif = SharedMLP([d_bottleneck, 64, 32],
dropout=[0.0, 0.5])
self.fc_classif = Linear(32, num_classes)
def forward(self, x, pos, batch, ptr):
x = x if x is not None else pos
b1_out = self.block1(self.fc0(x), pos, batch)
b1_out_decimated, ptr1 = decimate(b1_out, ptr, self.decimation)
b2_out = self.block2(*b1_out_decimated)
b2_out_decimated, ptr2 = decimate(b2_out, ptr1, self.decimation)
b3_out = self.block3(*b2_out_decimated)
b3_out_decimated, ptr3 = decimate(b3_out, ptr2, self.decimation)
b4_out = self.block4(*b3_out_decimated)
b4_out_decimated, _ = decimate(b4_out, ptr3, self.decimation)
mlp_out = (
self.mlp_summit(b4_out_decimated[0]),
b4_out_decimated[1],
b4_out_decimated[2],
)
fp4_out = self.fp4(*mlp_out, *b3_out_decimated)
fp3_out = self.fp3(*fp4_out, *b2_out_decimated)
fp2_out = self.fp2(*fp3_out, *b1_out_decimated)
fp1_out = self.fp1(*fp2_out, *b1_out)
x = self.mlp_classif(fp1_out[0])
logits = self.fc_classif(x)
if self.return_logits:
return logits
probas = logits.log_softmax(dim=-1)
return probas
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net(3, category_num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
def train():
model.train()
total_loss = correct_nodes = total_nodes = 0
for i, data in tqdm(enumerate(train_loader)):
data = data.to(device)
optimizer.zero_grad()
out = model(data.x, data.pos, data.batch, data.ptr)
loss = F.nll_loss(out, data.y)
loss.backward()
optimizer.step()
total_loss += loss.item()
correct_nodes += out.argmax(dim=1).eq(data.y).sum().item()
total_nodes += data.num_nodes
if (i + 1) % 10 == 0:
print(f'[{i+1}/{len(train_loader)}] Loss: {total_loss / 10:.4f} '
f'Train Acc: {correct_nodes / total_nodes:.4f}')
total_loss = correct_nodes = total_nodes = 0
@torch.no_grad()
def test(loader):
model.eval()
ious, categories = [], []
y_map = torch.empty(loader.dataset.num_classes, device=device).long()
for data in loader:
data = data.to(device)
outs = model(data.x, data.pos, data.batch, data.ptr)
sizes = (data.ptr[1:] - data.ptr[:-1]).tolist()
for out, y, category in zip(outs.split(sizes), data.y.split(sizes),
data.category.tolist()):
category = list(ShapeNet.seg_classes.keys())[category]
part = ShapeNet.seg_classes[category]
part = torch.tensor(part, device=device)
y_map[part] = torch.arange(part.size(0), device=device)
iou = jaccard_index(
out[:, part].argmax(dim=-1),
y_map[y],
num_classes=part.size(0),
absent_score=1.0,
)
ious.append(iou)
categories.append(data.category)
iou = torch.tensor(ious, device=device)
category = torch.cat(categories, dim=0)
mean_iou = scatter(iou, category, reduce='mean') # Per-category IoU.
return float(mean_iou.mean()) # Global IoU.
for epoch in range(1, 31):
train()
iou = test(test_loader)
print(f'Epoch: {epoch:02d}, Test IoU: {iou:.4f}')