-
Notifications
You must be signed in to change notification settings - Fork 882
/
Copy pathvllm_handler.py
188 lines (154 loc) · 6.15 KB
/
vllm_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import asyncio
import logging
import os
import pathlib
import time
from unittest.mock import MagicMock
from vllm import AsyncEngineArgs, AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (
ChatCompletionRequest,
CompletionRequest,
ErrorResponse,
)
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.serving_engine import LoRAModulePath
from ts.handler_utils.utils import send_intermediate_predict_response
from ts.service import PredictionException
from ts.torch_handler.base_handler import BaseHandler
logger = logging.getLogger(__name__)
class VLLMHandler(BaseHandler):
def __init__(self):
super().__init__()
self.vllm_engine = None
self.model_name = None
self.model_dir = None
self.lora_ids = {}
self.adapters = None
self.chat_completion_service = None
self.completion_service = None
self.raw_request = None
self.initialized = False
def initialize(self, ctx):
self.model_dir = ctx.system_properties.get("model_dir")
vllm_engine_config = self._get_vllm_engine_config(
ctx.model_yaml_config.get("handler", {})
)
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
self.vllm_engine = AsyncLLMEngine.from_engine_args(vllm_engine_config)
self.adapters = ctx.model_yaml_config.get("handler", {}).get("adapters", {})
lora_modules = [LoRAModulePath(n, p) for n, p in self.adapters.items()]
if vllm_engine_config.served_model_name:
served_model_names = vllm_engine_config.served_model_name
else:
served_model_names = [vllm_engine_config.model]
chat_template = ctx.model_yaml_config.get("handler", {}).get(
"chat_template", None
)
loop = asyncio.get_event_loop()
model_config = loop.run_until_complete(self.vllm_engine.get_model_config())
self.completion_service = OpenAIServingCompletion(
self.vllm_engine,
model_config,
served_model_names,
lora_modules=lora_modules,
prompt_adapters=None,
request_logger=None,
)
self.chat_completion_service = OpenAIServingChat(
self.vllm_engine,
model_config,
served_model_names,
"assistant",
lora_modules=lora_modules,
prompt_adapters=None,
request_logger=None,
chat_template=chat_template,
)
async def isd():
return False
self.raw_request = MagicMock()
self.raw_request.headers = {}
self.raw_request.is_disconnected = isd
self.initialized = True
async def handle(self, data, context):
start_time = time.time()
metrics = context.metrics
data_preprocess = await self.preprocess(data, context)
output = await self.inference(data_preprocess, context)
output = await self.postprocess(output)
stop_time = time.time()
metrics.add_time(
"HandlerTime", round((stop_time - start_time) * 1000, 2), None, "ms"
)
return output
async def preprocess(self, requests, context):
assert len(requests) == 1, "Expecting batch_size = 1"
req_data = requests[0]
data = req_data.get("data") or req_data.get("body")
if isinstance(data, (bytes, bytearray)):
data = data.decode("utf-8")
return [data]
async def inference(self, input_batch, context):
url_path = context.get_request_header(0, "url_path")
if url_path == "v1/models":
models = await self.chat_completion_service.show_available_models()
return [models.model_dump()]
directory = {
"v1/completions": (
CompletionRequest,
self.completion_service,
"create_completion",
),
"v1/chat/completions": (
ChatCompletionRequest,
self.chat_completion_service,
"create_chat_completion",
),
}
RequestType, service, func = directory.get(url_path, (None, None, None))
if RequestType is None:
raise PredictionException(f"Unknown API endpoint: {url_path}", 404)
request = RequestType.model_validate(input_batch[0])
g = await getattr(service, func)(
request,
self.raw_request,
)
if isinstance(g, ErrorResponse):
return [g.model_dump()]
if request.stream:
async for response in g:
if response != "data: [DONE]\n\n":
send_intermediate_predict_response(
[response], context.request_ids, "Result", 200, context
)
return [response]
else:
return [g.model_dump()]
async def postprocess(self, inference_outputs):
return inference_outputs
def _get_vllm_engine_config(self, handler_config: dict):
vllm_engine_params = handler_config.get("vllm_engine_config", {})
model = vllm_engine_params.get("model", {})
if len(model) == 0:
model_path = handler_config.get("model_path", {})
assert (
len(model_path) > 0
), "please define model in vllm_engine_config or model_path in handler"
model = pathlib.Path(self.model_dir).joinpath(model_path)
if not model.exists():
logger.debug(
f"Model path ({model}) does not exist locally. Trying to give without model_dir as prefix."
)
model = model_path
else:
model = model.as_posix()
logger.debug(f"EngineArgs model: {model}")
vllm_engine_config = AsyncEngineArgs(model=model)
self._set_attr_value(vllm_engine_config, vllm_engine_params)
return vllm_engine_config
def _set_attr_value(self, obj, config: dict):
items = vars(obj)
for k, v in config.items():
if k in items:
setattr(obj, k, v)