-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathlinear_regression.py
35 lines (27 loc) · 1.39 KB
/
linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pandas as pd
import numpy as np
from sklearn import svm
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error, r2_score
dataset = pd.read_csv("dataset.csv")
print ("Total number of rows in dataset: {}\n".format(len(dataset)))
print(dataset.head())
features = ['Day','Month','Year','Humidity','Max Temperature','Min Temperature',
'Rainfall','Sea Level Pressure','Sunshine','Wind Speed']
target = 'Cloud'
x_train, x_test, y_train, y_test = train_test_split(dataset[features], dataset[target],
train_size=0.7, test_size=0.3, shuffle=False)
# Print samples after running train_test_split
print("X_train: {}, Y_train: {}".format(len(x_train), len(x_test)))
print("X_train: {}, Y_train: {}".format(len(y_train), len(y_test)))
print("\n")
model = LinearRegression()
model.fit(x_train, y_train)
# Print results to evaluate model
print("Showing Performance Metrics for Naive Bayes Gaussian\n")
print ("Training Accuracy: {}".format(model.score(x_train, y_train)))
predicted = model.predict(x_test)
print ("Testing Accuracy: {}".format(accuracy_score(y_test, predicted)))