-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathlogistic_regression.py
65 lines (48 loc) · 2.32 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
# Read dataset from csv
dataset = pd.read_csv("dataset.csv")
print ("Total number of rows in dataset: {}\n".format(len(dataset)))
print(dataset.head())
# Features
features = ['Day','Month','Year','Humidity','Max Temperature','Min Temperature',
'Rainfall','Sea Level Pressure','Sunshine','Wind Speed']
target = 'Cloud'
x_train, x_test, y_train, y_test = train_test_split(dataset[features], dataset[target],
train_size=0.7, test_size=0.3, shuffle=False)
# Print samples after running train_test_split
print("X_train: {}, Y_train: {}".format(len(x_train), len(x_test)))
print("X_train: {}, Y_train: {}".format(len(y_train), len(y_test)))
print("\n")
# Logistic Regression Model setup after parameter tuning
# Not optimum for our dataset, so manually tuned parameters were used
# model = LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,
# intercept_scaling=1, max_iter=10000, multi_class='ovr', n_jobs=1,
# penalty='l2', random_state=None, solver='newton-cg', tol=0.0001,
# verbose=0, warm_start=False)
# Manual tuned paramters for Logistic Regression Model
model = LogisticRegression(C=0.01, penalty='l1', solver='liblinear')
model.fit(x_train, y_train)
# Print results to evaluate model
print("Showing Performance Metrics for Logistic Regression\n")
print ("Training Accuracy: {}".format(model.score(x_train, y_train)))
predicted = model.predict(x_test)
print ("Testing Accuracy: {}".format(accuracy_score(y_test, predicted)))
print("\n")
print("Cross Validation Accuracy: \n")
cv_accuracy = cross_val_score(estimator=model, X=x_train, y=y_train, cv=10)
print("Accuracy using 10 folds: ")
print(cv_accuracy)
print("\n")
print("Mean accuracy: {}".format(cv_accuracy.mean()))
print("Standard Deviation: {}".format(cv_accuracy.std()))
print("Confusion Matrix for Logistic Regression\n")
labels = [0, 1, 2]
cm = confusion_matrix(y_test, predicted, labels=labels)
print(cm)
print("\n")
print('Precision, Recall and f-1 Scores for Logistic Regression\n')
print(classification_report(y_test, predicted))