-
Notifications
You must be signed in to change notification settings - Fork 177
/
Copy pathvocab_util.py
63 lines (52 loc) · 2.03 KB
/
vocab_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for retrieving the vocabulary."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Dict, Text, Tuple
import six
import tensorflow as tf
def load_vocab(path: Text) -> Tuple[Dict[Text, int], Dict[int, Text]]:
"""Loads the vocabulary from the specified path.
Args:
path: The path to the vocabulary file. If the file has a tfrecord.gz suffix,
we assume it is a GZIP-compressed TFRecord file. Otherwise, we assume it
is a text file.
Returns:
A tuple where the first element is a dictionary specifying the string token
to integer mapping and the second element represents the reverse lookup
(i.e. integer token to string mapping).
Raises:
ValueError: Vocabulary path does not exist.
"""
vocab = {}
reverse_vocab = {}
if not tf.io.gfile.exists(path):
raise ValueError('Vocabulary path: %s does not exist' % path)
def populate_entry(index, entry):
entry = six.ensure_text(entry).strip()
vocab[entry] = index
reverse_vocab[index] = entry
if path.endswith('tfrecord.gz'):
data_iter = tf.compat.v1.io.tf_record_iterator(
path,
tf.io.TFRecordOptions(compression_type='GZIP'))
for index, entry in enumerate(data_iter):
populate_entry(index, entry)
else:
with tf.io.gfile.GFile(path) as f:
for index, entry in enumerate(f):
populate_entry(index, entry)
return vocab, reverse_vocab