It has been a while since I posted a copy of PEP 1 to the mailing
lists and newsgroups. I've recently done some updating of a few
sections, so in the interest of gaining wider community participation
in the Python development process, I'm posting the latest revision of
PEP 1 here. A version of the PEP is always available on-line at
http://www.python.org/peps/pep-0001.html
Enjoy,
-Barry
-------------------- snip snip --------------------
PEP: 1
Title: PEP Purpose and Guidelines
Version: $Revision: 1.36 $
Last-Modified: $Date: 2002/07/29 18:34:59 $
Author: Barry A. Warsaw, Jeremy Hylton
Status: Active
Type: Informational
Created: 13-Jun-2000
Post-History: 21-Mar-2001, 29-Jul-2002
What is a PEP?
PEP stands for Python Enhancement Proposal. A PEP is a design
document providing information to the Python community, or
describing a new feature for Python. The PEP should provide a
concise technical specification of the feature and a rationale for
the feature.
We intend PEPs to be the primary mechanisms for proposing new
features, for collecting community input on an issue, and for
documenting the design decisions that have gone into Python. The
PEP author is responsible for building consensus within the
community and documenting dissenting opinions.
Because the PEPs are maintained as plain text files under CVS
control, their revision history is the historical record of the
feature proposal[1].
Kinds of PEPs
There are two kinds of PEPs. A standards track PEP describes a
new feature or implementation for Python. An informational PEP
describes a Python design issue, or provides general guidelines or
information to the Python community, but does not propose a new
feature. Informational PEPs do not necessarily represent a Python
community consensus or recommendation, so users and implementors
are free to ignore informational PEPs or follow their advice.
PEP Work Flow
The PEP editor, Barry Warsaw <peps(a)python.org>, assigns numbers
for each PEP and changes its status.
The PEP process begins with a new idea for Python. It is highly
recommended that a single PEP contain a single key proposal or new
idea. The more focussed the PEP, the more successfully it tends
to be. The PEP editor reserves the right to reject PEP proposals
if they appear too unfocussed or too broad. If in doubt, split
your PEP into several well-focussed ones.
Each PEP must have a champion -- someone who writes the PEP using
the style and format described below, shepherds the discussions in
the appropriate forums, and attempts to build community consensus
around the idea. The PEP champion (a.k.a. Author) should first
attempt to ascertain whether the idea is PEP-able. Small
enhancements or patches often don't need a PEP and can be injected
into the Python development work flow with a patch submission to
the SourceForge patch manager[2] or feature request tracker[3].
The PEP champion then emails the PEP editor <peps(a)python.org> with
a proposed title and a rough, but fleshed out, draft of the PEP.
This draft must be written in PEP style as described below.
If the PEP editor approves, he will assign the PEP a number, label
it as standards track or informational, give it status 'draft',
and create and check-in the initial draft of the PEP. The PEP
editor will not unreasonably deny a PEP. Reasons for denying PEP
status include duplication of effort, being technically unsound,
not providing proper motivation or addressing backwards
compatibility, or not in keeping with the Python philosophy. The
BDFL (Benevolent Dictator for Life, Guido van Rossum) can be
consulted during the approval phase, and is the final arbitrator
of the draft's PEP-ability.
If a pre-PEP is rejected, the author may elect to take the pre-PEP
to the comp.lang.python newsgroup (a.k.a. python-list(a)python.org
mailing list) to help flesh it out, gain feedback and consensus
from the community at large, and improve the PEP for
re-submission.
The author of the PEP is then responsible for posting the PEP to
the community forums, and marshaling community support for it. As
updates are necessary, the PEP author can check in new versions if
they have CVS commit permissions, or can email new PEP versions to
the PEP editor for committing.
Standards track PEPs consists of two parts, a design document and
a reference implementation. The PEP should be reviewed and
accepted before a reference implementation is begun, unless a
reference implementation will aid people in studying the PEP.
Standards Track PEPs must include an implementation - in the form
of code, patch, or URL to same - before it can be considered
Final.
PEP authors are responsible for collecting community feedback on a
PEP before submitting it for review. A PEP that has not been
discussed on python-list(a)python.org and/or python-dev(a)python.org
will not be accepted. However, wherever possible, long open-ended
discussions on public mailing lists should be avoided. Strategies
to keep the discussions efficient include, setting up a separate
SIG mailing list for the topic, having the PEP author accept
private comments in the early design phases, etc. PEP authors
should use their discretion here.
Once the authors have completed a PEP, they must inform the PEP
editor that it is ready for review. PEPs are reviewed by the BDFL
and his chosen consultants, who may accept or reject a PEP or send
it back to the author(s) for revision.
Once a PEP has been accepted, the reference implementation must be
completed. When the reference implementation is complete and
accepted by the BDFL, the status will be changed to `Final.'
A PEP can also be assigned status `Deferred.' The PEP author or
editor can assign the PEP this status when no progress is being
made on the PEP. Once a PEP is deferred, the PEP editor can
re-assign it to draft status.
A PEP can also be `Rejected'. Perhaps after all is said and done
it was not a good idea. It is still important to have a record of
this fact.
PEPs can also be replaced by a different PEP, rendering the
original obsolete. This is intended for Informational PEPs, where
version 2 of an API can replace version 1.
PEP work flow is as follows:
Draft -> Accepted -> Final -> Replaced
^
+----> Rejected
v
Deferred
Some informational PEPs may also have a status of `Active' if they
are never meant to be completed. E.g. PEP 1.
What belongs in a successful PEP?
Each PEP should have the following parts:
1. Preamble -- RFC822 style headers containing meta-data about the
PEP, including the PEP number, a short descriptive title
(limited to a maximum of 44 characters), the names, and
optionally the contact info for each author, etc.
2. Abstract -- a short (~200 word) description of the technical
issue being addressed.
3. Copyright/public domain -- Each PEP must either be explicitly
labelled as placed in the public domain (see this PEP as an
example) or licensed under the Open Publication License[4].
4. Specification -- The technical specification should describe
the syntax and semantics of any new language feature. The
specification should be detailed enough to allow competing,
interoperable implementations for any of the current Python
platforms (CPython, JPython, Python .NET).
5. Motivation -- The motivation is critical for PEPs that want to
change the Python language. It should clearly explain why the
existing language specification is inadequate to address the
problem that the PEP solves. PEP submissions without
sufficient motivation may be rejected outright.
6. Rationale -- The rationale fleshes out the specification by
describing what motivated the design and why particular design
decisions were made. It should describe alternate designs that
were considered and related work, e.g. how the feature is
supported in other languages.
The rationale should provide evidence of consensus within the
community and discuss important objections or concerns raised
during discussion.
7. Backwards Compatibility -- All PEPs that introduce backwards
incompatibilities must include a section describing these
incompatibilities and their severity. The PEP must explain how
the author proposes to deal with these incompatibilities. PEP
submissions without a sufficient backwards compatibility
treatise may be rejected outright.
8. Reference Implementation -- The reference implementation must
be completed before any PEP is given status 'Final,' but it
need not be completed before the PEP is accepted. It is better
to finish the specification and rationale first and reach
consensus on it before writing code.
The final implementation must include test code and
documentation appropriate for either the Python language
reference or the standard library reference.
PEP Template
PEPs are written in plain ASCII text, and should adhere to a
rigid style. There is a Python script that parses this style and
converts the plain text PEP to HTML for viewing on the web[5].
PEP 9 contains a boilerplate[7] template you can use to get
started writing your PEP.
Each PEP must begin with an RFC822 style header preamble. The
headers must appear in the following order. Headers marked with
`*' are optional and are described below. All other headers are
required.
PEP: <pep number>
Title: <pep title>
Version: <cvs version string>
Last-Modified: <cvs date string>
Author: <list of authors' real names and optionally, email addrs>
* Discussions-To: <email address>
Status: <Draft | Active | Accepted | Deferred | Final | Replaced>
Type: <Informational | Standards Track>
* Requires: <pep numbers>
Created: <date created on, in dd-mmm-yyyy format>
* Python-Version: <version number>
Post-History: <dates of postings to python-list and python-dev>
* Replaces: <pep number>
* Replaced-By: <pep number>
The Author: header lists the names and optionally, the email
addresses of all the authors/owners of the PEP. The format of the
author entry should be
address(a)dom.ain (Random J. User)
if the email address is included, and just
Random J. User
if the address is not given. If there are multiple authors, each
should be on a separate line following RFC 822 continuation line
conventions. Note that personal email addresses in PEPs will be
obscured as a defense against spam harvesters.
Standards track PEPs must have a Python-Version: header which
indicates the version of Python that the feature will be released
with. Informational PEPs do not need a Python-Version: header.
While a PEP is in private discussions (usually during the initial
Draft phase), a Discussions-To: header will indicate the mailing
list or URL where the PEP is being discussed. No Discussions-To:
header is necessary if the PEP is being discussed privately with
the author, or on the python-list or python-dev email mailing
lists. Note that email addresses in the Discussions-To: header
will not be obscured.
Created: records the date that the PEP was assigned a number,
while Post-History: is used to record the dates of when new
versions of the PEP are posted to python-list and/or python-dev.
Both headers should be in dd-mmm-yyyy format, e.g. 14-Aug-2001.
PEPs may have a Requires: header, indicating the PEP numbers that
this PEP depends on.
PEPs may also have a Replaced-By: header indicating that a PEP has
been rendered obsolete by a later document; the value is the
number of the PEP that replaces the current document. The newer
PEP must have a Replaces: header containing the number of the PEP
that it rendered obsolete.
PEP Formatting Requirements
PEP headings must begin in column zero and the initial letter of
each word must be capitalized as in book titles. Acronyms should
be in all capitals. The body of each section must be indented 4
spaces. Code samples inside body sections should be indented a
further 4 spaces, and other indentation can be used as required to
make the text readable. You must use two blank lines between the
last line of a section's body and the next section heading.
You must adhere to the Emacs convention of adding two spaces at
the end of every sentence. You should fill your paragraphs to
column 70, but under no circumstances should your lines extend
past column 79. If your code samples spill over column 79, you
should rewrite them.
Tab characters must never appear in the document at all. A PEP
should include the standard Emacs stanza included by example at
the bottom of this PEP.
A PEP must contain a Copyright section, and it is strongly
recommended to put the PEP in the public domain.
When referencing an external web page in the body of a PEP, you
should include the title of the page in the text, with a
footnote reference to the URL. Do not include the URL in the body
text of the PEP. E.g.
Refer to the Python Language web site [1] for more details.
...
[1] http://www.python.org
When referring to another PEP, include the PEP number in the body
text, such as "PEP 1". The title may optionally appear. Add a
footnote reference that includes the PEP's title and author. It
may optionally include the explicit URL on a separate line, but
only in the References section. Note that the pep2html.py script
will calculate URLs automatically, e.g.:
...
Refer to PEP 1 [7] for more information about PEP style
...
References
[7] PEP 1, PEP Purpose and Guidelines, Warsaw, Hylton
http://www.python.org/peps/pep-0001.html
If you decide to provide an explicit URL for a PEP, please use
this as the URL template:
http://www.python.org/peps/pep-xxxx.html
PEP numbers in URLs must be padded with zeros from the left, so as
to be exactly 4 characters wide, however PEP numbers in text are
never padded.
Reporting PEP Bugs, or Submitting PEP Updates
How you report a bug, or submit a PEP update depends on several
factors, such as the maturity of the PEP, the preferences of the
PEP author, and the nature of your comments. For the early draft
stages of the PEP, it's probably best to send your comments and
changes directly to the PEP author. For more mature, or finished
PEPs you may want to submit corrections to the SourceForge bug
manager[6] or better yet, the SourceForge patch manager[2] so that
your changes don't get lost. If the PEP author is a SF developer,
assign the bug/patch to him, otherwise assign it to the PEP
editor.
When in doubt about where to send your changes, please check first
with the PEP author and/or PEP editor.
PEP authors who are also SF committers, can update the PEPs
themselves by using "cvs commit" to commit their changes.
Remember to also push the formatted PEP text out to the web by
doing the following:
% python pep2html.py -i NUM
where NUM is the number of the PEP you want to push out. See
% python pep2html.py --help
for details.
Transferring PEP Ownership
It occasionally becomes necessary to transfer ownership of PEPs to
a new champion. In general, we'd like to retain the original
author as a co-author of the transferred PEP, but that's really up
to the original author. A good reason to transfer ownership is
because the original author no longer has the time or interest in
updating it or following through with the PEP process, or has
fallen off the face of the 'net (i.e. is unreachable or not
responding to email). A bad reason to transfer ownership is
because you don't agree with the direction of the PEP. We try to
build consensus around a PEP, but if that's not possible, you can
always submit a competing PEP.
If you are interested assuming ownership of a PEP, send a message
asking to take over, addressed to both the original author and the
PEP editor <peps(a)python.org>. If the original author doesn't
respond to email in a timely manner, the PEP editor will make a
unilateral decision (it's not like such decisions can be
reversed. :).
References and Footnotes
[1] This historical record is available by the normal CVS commands
for retrieving older revisions. For those without direct access
to the CVS tree, you can browse the current and past PEP revisions
via the SourceForge web site at
http://cvs.sourceforge.net/cgi-bin/cvsweb.cgi/python/nondist/peps/?cvsroot=…
[2] http://sourceforge.net/tracker/?group_id=5470&atid=305470
[3] http://sourceforge.net/tracker/?atid=355470&group_id=5470&func=browse
[4] http://www.opencontent.org/openpub/
[5] The script referred to here is pep2html.py, which lives in
the same directory in the CVS tree as the PEPs themselves.
Try "pep2html.py --help" for details.
The URL for viewing PEPs on the web is
http://www.python.org/peps/
[6] http://sourceforge.net/tracker/?group_id=5470&atid=305470
[7] PEP 9, Sample PEP Template
http://www.python.org/peps/pep-0009.html
Copyright
This document has been placed in the public domain.
Local Variables:
mode: indented-text
indent-tabs-mode: nil
sentence-end-double-space: t
fill-column: 70
End:
I've received some enthusiastic emails from someone who wants to
revive restricted mode. He started out with a bunch of patches to the
CPython runtime using ctypes, which he attached to an App Engine bug:
http://code.google.com/p/googleappengine/issues/detail?id=671
Based on his code (the file secure.py is all you need, included in
secure.tar.gz) it seems he believes the only security leaks are
__subclasses__, gi_frame and gi_code. (I have since convinced him that
if we add "restricted" guards to these attributes, he doesn't need the
functions added to sys.)
I don't recall the exploits that Samuele once posted that caused the
death of rexec.py -- does anyone recall, or have a pointer to the
threads?
--
--Guido van Rossum (home page: http://www.python.org/~guido/)
Alright, I will re-submit with the contents pasted. I never use double
backquotes as I think them rather ugly; that is the work of an editor
or some automated program in the chain. Plus, it also messed up my
line formatting and now I have lines with one word on them... Anyway,
the contents of PEP 3145:
PEP: 3145
Title: Asynchronous I/O For subprocess.Popen
Author: (James) Eric Pruitt, Charles R. McCreary, Josiah Carlson
Type: Standards Track
Content-Type: text/plain
Created: 04-Aug-2009
Python-Version: 3.2
Abstract:
In its present form, the subprocess.Popen implementation is prone to
dead-locking and blocking of the parent Python script while waiting on data
from the child process.
Motivation:
A search for "python asynchronous subprocess" will turn up numerous
accounts of people wanting to execute a child process and communicate with
it from time to time reading only the data that is available instead of
blocking to wait for the program to produce data [1] [2] [3]. The current
behavior of the subprocess module is that when a user sends or receives
data via the stdin, stderr and stdout file objects, dead locks are common
and documented [4] [5]. While communicate can be used to alleviate some of
the buffering issues, it will still cause the parent process to block while
attempting to read data when none is available to be read from the child
process.
Rationale:
There is a documented need for asynchronous, non-blocking functionality in
subprocess.Popen [6] [7] [2] [3]. Inclusion of the code would improve the
utility of the Python standard library that can be used on Unix based and
Windows builds of Python. Practically every I/O object in Python has a
file-like wrapper of some sort. Sockets already act as such and for
strings there is StringIO. Popen can be made to act like a file by simply
using the methods attached the the subprocess.Popen.stderr, stdout and
stdin file-like objects. But when using the read and write methods of
those options, you do not have the benefit of asynchronous I/O. In the
proposed solution the wrapper wraps the asynchronous methods to mimic a
file object.
Reference Implementation:
I have been maintaining a Google Code repository that contains all of my
changes including tests and documentation [9] as well as blog detailing
the problems I have come across in the development process [10].
I have been working on implementing non-blocking asynchronous I/O in the
subprocess.Popen module as well as a wrapper class for subprocess.Popen
that makes it so that an executed process can take the place of a file by
duplicating all of the methods and attributes that file objects have.
There are two base functions that have been added to the subprocess.Popen
class: Popen.send and Popen._recv, each with two separate implementations,
one for Windows and one for Unix based systems. The Windows
implementation uses ctypes to access the functions needed to control pipes
in the kernel 32 DLL in an asynchronous manner. On Unix based systems,
the Python interface for file control serves the same purpose. The
different implementations of Popen.send and Popen._recv have identical
arguments to make code that uses these functions work across multiple
platforms.
When calling the Popen._recv function, it requires the pipe name be
passed as an argument so there exists the Popen.recv function that passes
selects stdout as the pipe for Popen._recv by default. Popen.recv_err
selects stderr as the pipe by default. "Popen.recv" and "Popen.recv_err"
are much easier to read and understand than "Popen._recv('stdout' ..." and
"Popen._recv('stderr' ..." respectively.
Since the Popen._recv function does not wait on data to be produced
before returning a value, it may return empty bytes. Popen.asyncread
handles this issue by returning all data read over a given time
interval.
The ProcessIOWrapper class uses the asyncread and asyncwrite functions to
allow a process to act like a file so that there are no blocking issues
that can arise from using the stdout and stdin file objects produced from
a subprocess.Popen call.
References:
[1] [ python-Feature Requests-1191964 ] asynchronous Subprocess
http://mail.python.org/pipermail/python-bugs-list/2006-December/
036524.html
[2] Daily Life in an Ivory Basement : /feb-07/problems-with-subprocess
http://ivory.idyll.org/blog/feb-07/problems-with-subprocess
[3] How can I run an external command asynchronously from Python? - Stack
Overflow
http://stackoverflow.com/questions/636561/how-can-i-run-an-external-
command-asynchronously-from-python
[4] 18.1. subprocess - Subprocess management - Python v2.6.2 documentation
http://docs.python.org/library/subprocess.html#subprocess.Popen.wait
[5] 18.1. subprocess - Subprocess management - Python v2.6.2 documentation
http://docs.python.org/library/subprocess.html#subprocess.Popen.kill
[6] Issue 1191964: asynchronous Subprocess - Python tracker
http://bugs.python.org/issue1191964
[7] Module to allow Asynchronous subprocess use on Windows and Posix
platforms - ActiveState Code
http://code.activestate.com/recipes/440554/
[8] subprocess.rst - subprocdev - Project Hosting on Google Code
http://code.google.com/p/subprocdev/source/browse/doc/subprocess.rst?spec=s…
[9] subprocdev - Project Hosting on Google Code
http://code.google.com/p/subprocdev
[10] Python Subprocess Dev
http://subdev.blogspot.com/
Copyright:
This P.E.P. is licensed under the Open Publication License;
http://www.opencontent.org/openpub/.
On Tue, Sep 8, 2009 at 22:56, Benjamin Peterson <benjamin(a)python.org> wrote:
> 2009/9/7 Eric Pruitt <eric.pruitt(a)gmail.com>:
>> Hello all,
>>
>> I have been working on adding asynchronous I/O to the Python
>> subprocess module as part of my Google Summer of Code project. Now
>> that I have finished documenting and pruning the code, I present PEP
>> 3145 for its inclusion into the Python core code. Any and all feedback
>> on the PEP (http://www.python.org/dev/peps/pep-3145/) is appreciated.
>
> Hi Eric,
> One of the reasons you're not getting many response is that you've not
> pasted the contents of the PEP in this message. That makes it really
> easy for people to comment on various sections.
>
> BTW, it seems like you were trying to use reST formatting with the
> text PEP layout. Double backquotes only mean something in reST.
>
>
> --
> Regards,
> Benjamin
>
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
A Solaris installation contains ALWAYS 32 and 64 bits libraries. So in
any Solaris you can run 32/64 bits programs, and compile in 32 and 64 bits.
For this, libraries are stores in "/usr/lib", for instance, for 32 bits,
while the same 64 bits libraries are stored in "/usr/lib/64".
Currently, python do not considerate this.
We have Solaris 10 buildslaves, but they compile in 32 bits, aparently.
For instance
<http://www.python.org/dev/buildbot/all/builders/sparc%20solaris10%20gcc%203…>.
We now have 32 and 64 bits OpenIndiana buildslaves, so we can actually
check this. They were deployed yesterday.
Apparently the changes would be pretty simple, adding ".../64" to
library paths, to try to find the extra libraries.
What do you think?.
- --
Jesus Cea Avion _/_/ _/_/_/ _/_/_/
jcea(a)jcea.es - http://www.jcea.es/ _/_/ _/_/ _/_/ _/_/ _/_/
jabber / xmpp:jcea@jabber.org _/_/ _/_/ _/_/_/_/_/
. _/_/ _/_/ _/_/ _/_/ _/_/
"Things are not so easy" _/_/ _/_/ _/_/ _/_/ _/_/ _/_/
"My name is Dump, Core Dump" _/_/_/ _/_/_/ _/_/ _/_/
"El amor es poner tu felicidad en la felicidad de otro" - Leibniz
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
Comment: Using GnuPG with Mozilla - http://enigmail.mozdev.org/
iQCVAwUBTOq3yZlgi5GaxT1NAQLQhAP9G2liX+YveYmfYDOuVjWWS8PE7r2wM/XA
5rik9mJM4Z7/wDnY4wrWjG5l3B9sSyrhhNI1YmIcXm4klfYxV9xTkG9dMNL+2bVc
+s98rlTdjNlMVTf8Xc7U3tMpdkG/JK0+XWmRfWsf52ATdtxPHazI9L6KvqdYjNuZ
2w3dXNXErZE=
=oYXo
-----END PGP SIGNATURE-----
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
I have installed GDB 7.2 32 bits and 32 bits buildslaves are green.
Nevertheless 64 bits buildslaves are failing test_gdb.
Is there any expectation that a 32 bits GDB be able to debug a 64 bits
python?. If not, gdb test should compare "platform.architecture()" (for
python and gdb in the system) and run only when they are the same. If
this should work, I would open a bug and maybe spend some time with it.
But before thinking about investing time, I would like to know if this
mix is actually expected or not to work.
If not, I would consider to install a 64 bits GDB too and do some tricks
(like using an "/usr/local/bin/gdb" script wrapper to choose 32/64
"real" gdb version) to actually execute "test_gdb" in both buildslaves
(they are running in the same physical machine).
Any advice?
PS: I am talking about AMD64 OpenIndiana buildbots. Haven't check others.
- --
Jesus Cea Avion _/_/ _/_/_/ _/_/_/
jcea(a)jcea.es - http://www.jcea.es/ _/_/ _/_/ _/_/ _/_/ _/_/
jabber / xmpp:jcea@jabber.org _/_/ _/_/ _/_/_/_/_/
. _/_/ _/_/ _/_/ _/_/ _/_/
"Things are not so easy" _/_/ _/_/ _/_/ _/_/ _/_/ _/_/
"My name is Dump, Core Dump" _/_/_/ _/_/_/ _/_/ _/_/
"El amor es poner tu felicidad en la felicidad de otro" - Leibniz
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
Comment: Using GnuPG with Mozilla - http://enigmail.mozdev.org/
iQCVAwUBTO8zjJlgi5GaxT1NAQLusgP9GVuhvQJWhPqjzdkZnrMObQg0AD6ggbIR
2B4IstFpD1bKvIcGPJv0Irk3+heaQuFbTzYVLC132d89Ektfib9ZbJ/hzJz2wqd2
lnkfNUCV0tKal3P7kbGYUk828glIrlufSuF1HYIknd2BAzHFl5Zf6q5/AXzYr90D
v4Y82b7Wg0k=
=NHcR
-----END PGP SIGNATURE-----
Which I noticed since it's cited in the BeOpen license we still refer
to in LICENSE. Since pythonlabs.com itself is still up, it probably
isn't much work to make the logos.html URI work again, but I don't know
who maintains that page.
cheer,
Georg
--
Thus spake the Lord: Thou shalt indent with four spaces. No more, no less.
Four shall be the number of spaces thou shalt indent, and the number of thy
indenting shall be four. Eight shalt thou not indent, nor either indent thou
two, excepting that thou then proceed to four. Tabs are right out.
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
Current Python lacks support for "aio_*" syscalls to do async IO. I
think this could be a nice addition for python 3.3.
If you agree, I will create an issue in the tracker. If you think the
idea is of no value, please say so for me to move on. Maybe an 3th party
module, but I think this functionality sould be available in core python.
Thanks!.
PS: The function calls are: aio_cancel, aio_error, aio_fsync, aio_read,
aio_return, aio_write.
- --
Jesus Cea Avion _/_/ _/_/_/ _/_/_/
jcea(a)jcea.es - http://www.jcea.es/ _/_/ _/_/ _/_/ _/_/ _/_/
jabber / xmpp:jcea@jabber.org _/_/ _/_/ _/_/_/_/_/
. _/_/ _/_/ _/_/ _/_/ _/_/
"Things are not so easy" _/_/ _/_/ _/_/ _/_/ _/_/ _/_/
"My name is Dump, Core Dump" _/_/_/ _/_/_/ _/_/ _/_/
"El amor es poner tu felicidad en la felicidad de otro" - Leibniz
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
Comment: Using GnuPG with Mozilla - http://enigmail.mozdev.org/
iQCVAwUBTL3MUplgi5GaxT1NAQKv5QQAnDan88kXJ67fucz2rT/mZze+065lm9E4
+XJ2JfqGMVE1/qMsXwg81l19RHSYReBgBjd7zyXWE9Fk/1Rfq4gjOZEtoG0IpGZG
E3CH+Ab5/o/PjJZNKQaPpe0cwGSXFPKkPpgepKS1d8ZXyf6VXMc8UTSWjMI5jIVe
4M+yvw5m4I0=
=nsdO
-----END PGP SIGNATURE-----
Hi,
Just to let you know that we now have 8 stable buildbots, including
Barry's own PPC Ubuntu machine (even though the Windows buildbots give
a rather unconventional meaning to the word "stability").
Right now they are mostly green:
http://www.python.org/dev/buildbot/all/waterfall?category=3.x.stable
cheers
Antoine.
Two recently reported issues brought into light the fact that Python
language definition is closely tied to character properties maintained
by the Unicode Consortium. [1,2] For example, when Python switches to
Unicode 6.0.0 (planned for the upcoming 3.2 release), we will gain two
additional characters that Python can use in identifiers. [3]
With Python 3.1:
>>> exec('\u0CF1 = 1')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<string>", line 1
ೱ = 1
^
SyntaxError: invalid character in identifier
but with Python 3.2a4:
>>> exec('\u0CF1 = 1')
>>> eval('\u0CF1')
1
Of course, the likelihood is low that this change will affect any
user, but the change in str.isspace() reported in [1] is likely to
cause some trouble:
Python 2.6.5:
>>> u'A\u200bB'.split()
[u'A', u'B']
Python 2.7:
>>> u'A\u200bB'.split()
[u'A\u200bB']
While we have little choice but to follow UCD in defining
str.isidentifier(), I think Python can promise users more stability in
what it treats as space or as a digit in its builtins. For example,
I don't think that supporting
>>> float('١٢٣٤.٥٦')
1234.56
is more important than to assure users that once their program
accepted some text as a number, they can assume that the text is
ASCII.
[1] http://bugs.python.org/issue10567
[2] http://bugs.python.org/issue10557
[3] http://www.unicode.org/versions/Unicode6.0.0/#Database_Changes