Skip to main content
added 3 characters in body
Source Link
Oscar Lanzi
  • 51.2k
  • 2
  • 56
  • 137

Lots of cubic equations can be solved in terms of trigonometric roots, and they do not have to involve angles divisibie by $\pi/7$ or $\pi/9$.

The minimal denominator greater than $9$ for such an equation is $13$. For simplicity I shall render $2\cos(2m\pi)$$2\cos(2m\pi/13)$ as $[m]$ below.

We start with the cyclic-sum relation

$[0]+[1]+[2]+...+[12]=0.$

As $[0]=2$ and $[13-m]=[m]$ this reduces to

$[1]+[2]+[3]+[4]+[5]+[6]=-1,$

and we group these terms into three pairs having the same ratio $\bmod13$:

$([1]+[5])+([2]+[3])+([4]+[6])=-1$

where $5/1\equiv 2/3\equiv 4/6\equiv 5\bmod 13$.

Then $x_1=[1]+[5],x_2=[2]+[3],x_3=[4]+[6]$ have the sum $-1$, and using this sum combined with the trigonometric sum-product ratios we find that the other symmetric sum-product combinations are also integers:

$([1]+[5])([2]+[3])=[1][2]+[1][3]+[5][2]+[5][3]$

$=[1]+[3]+[2]+[4]+[3]+[7]+[2]+[8]$

$=[1]+2[2]+2[3]+[4]+[5]+[6]$

$([1]+[5])([4]+[6])=2[1]+[2]+[3]+[4]+2[5]+[6]$

$([2]+[3])([4]+[6])=[1]+[2]+[3]+2[4]+[5]+2[6]$

$\therefore ([1]+[5])([2]+[3])+([1]+[5])([4]+[6])+([2]+[3])([4]+[6])=4([1]+[2]+[3]+[4]+[5]+[5]+[6])=-4$

and by similar manipulations

$([1]+[5])([2]+[3])([4]+[6])=2[0]+5([1]+[2]+[3]+[4]+[5]+[6])=-1$

So

$x_1=2[\cos(2\pi/13)+\cos(10\pi/13)]$

$x_2=2[\cos(4\pi/13)+\cos(6\pi/13)]$

$x_3=2[\cos(8\pi/13)+\cos(12\pi/13)]$

solve the equation

$x^3+x^2-4x+1=0.$

Lots of cubic equations can be solved in terms of trigonometric roots, and they do not have to involve angles divisibie by $\pi/7$ or $\pi/9$.

The minimal denominator greater than $9$ for such an equation is $13$. For simplicity I shall render $2\cos(2m\pi)$ as $[m]$ below.

We start with the cyclic-sum relation

$[0]+[1]+[2]+...+[12]=0.$

As $[0]=2$ and $[13-m]=[m]$ this reduces to

$[1]+[2]+[3]+[4]+[5]+[6]=-1,$

and we group these terms into three pairs having the same ratio $\bmod13$:

$([1]+[5])+([2]+[3])+([4]+[6])=-1$

where $5/1\equiv 2/3\equiv 4/6\equiv 5\bmod 13$.

Then $x_1=[1]+[5],x_2=[2]+[3],x_3=[4]+[6]$ have the sum $-1$, and using this sum combined with the trigonometric sum-product ratios we find that the other symmetric sum-product combinations are also integers:

$([1]+[5])([2]+[3])=[1][2]+[1][3]+[5][2]+[5][3]$

$=[1]+[3]+[2]+[4]+[3]+[7]+[2]+[8]$

$=[1]+2[2]+2[3]+[4]+[5]+[6]$

$([1]+[5])([4]+[6])=2[1]+[2]+[3]+[4]+2[5]+[6]$

$([2]+[3])([4]+[6])=[1]+[2]+[3]+2[4]+[5]+2[6]$

$\therefore ([1]+[5])([2]+[3])+([1]+[5])([4]+[6])+([2]+[3])([4]+[6])=4([1]+[2]+[3]+[4]+[5]+[5]+[6])=-4$

and by similar manipulations

$([1]+[5])([2]+[3])([4]+[6])=2[0]+5([1]+[2]+[3]+[4]+[5]+[6])=-1$

So

$x_1=2[\cos(2\pi/13)+\cos(10\pi/13)]$

$x_2=2[\cos(4\pi/13)+\cos(6\pi/13)]$

$x_3=2[\cos(8\pi/13)+\cos(12\pi/13)]$

solve the equation

$x^3+x^2-4x+1=0.$

Lots of cubic equations can be solved in terms of trigonometric roots, and they do not have to involve angles divisibie by $\pi/7$ or $\pi/9$.

The minimal denominator greater than $9$ for such an equation is $13$. For simplicity I shall render $2\cos(2m\pi/13)$ as $[m]$ below.

We start with the cyclic-sum relation

$[0]+[1]+[2]+...+[12]=0.$

As $[0]=2$ and $[13-m]=[m]$ this reduces to

$[1]+[2]+[3]+[4]+[5]+[6]=-1,$

and we group these terms into three pairs having the same ratio $\bmod13$:

$([1]+[5])+([2]+[3])+([4]+[6])=-1$

where $5/1\equiv 2/3\equiv 4/6\equiv 5\bmod 13$.

Then $x_1=[1]+[5],x_2=[2]+[3],x_3=[4]+[6]$ have the sum $-1$, and using this sum combined with the trigonometric sum-product ratios we find that the other symmetric sum-product combinations are also integers:

$([1]+[5])([2]+[3])=[1][2]+[1][3]+[5][2]+[5][3]$

$=[1]+[3]+[2]+[4]+[3]+[7]+[2]+[8]$

$=[1]+2[2]+2[3]+[4]+[5]+[6]$

$([1]+[5])([4]+[6])=2[1]+[2]+[3]+[4]+2[5]+[6]$

$([2]+[3])([4]+[6])=[1]+[2]+[3]+2[4]+[5]+2[6]$

$\therefore ([1]+[5])([2]+[3])+([1]+[5])([4]+[6])+([2]+[3])([4]+[6])=4([1]+[2]+[3]+[4]+[5]+[5]+[6])=-4$

and by similar manipulations

$([1]+[5])([2]+[3])([4]+[6])=2[0]+5([1]+[2]+[3]+[4]+[5]+[6])=-1$

So

$x_1=2[\cos(2\pi/13)+\cos(10\pi/13)]$

$x_2=2[\cos(4\pi/13)+\cos(6\pi/13)]$

$x_3=2[\cos(8\pi/13)+\cos(12\pi/13)]$

solve the equation

$x^3+x^2-4x+1=0.$

edited body
Source Link
Oscar Lanzi
  • 51.2k
  • 2
  • 56
  • 137

Lots of cubic equations can be solved in terms of trigonometric roots, and they do not have to involve angles divisibie by $\pi/7$ or $\pi/9$.

The minimal denominator greater than $9$ for such an equation is $13$. For simplicity I shall render $2\cos(2m\pi)$ as $[m]$ below.

We start with the cyclic-sum relation

$[0]+[1]+[2]+...+[12]=0.$

As $[0]=2$ and $[13-m]=[m]$ this reduces to

$[1]+[2]+[3]+[4]+[5]+[6]=-1,$

and we group these terms into three pairs having the same ratio $\bmod13$:

$([1]+[5])+([2]+[3])+([4]+[6])=-1$

where $5/1\equiv 2/3\equiv 4/6\equiv 5\bmod 13$.

Then $x_1=[1]+[5],x_2=[2]+[3],x_3=[4]+[6]$ have the sum $-1$, and using this sum combined with the trigonometric sum-product ratios we find that the other symmetric sum-product combinations are also integers:

$([1]+[5])([2]+[3])=[1][2]+[1][3]+[5][2]+[5][3]$

$=[1]+[3]+[2]+[4]+[3]+[7]+[2]+[8]$

$=[1]+2[2]+2[3]+[4]+[5]+[6]$

$([1]+[5])([4]+[6])=2[1]+[2]+[3]+[4]+2[5]+[6]$

$([2]+[3])([4]+[6])=[1]+[2]+[3]+2[4]+[5]+6[6]$$([2]+[3])([4]+[6])=[1]+[2]+[3]+2[4]+[5]+2[6]$

$\therefore ([1]+[5])([2]+[3])+([1]+[5])([4]+[6])+([2]+[3])([4]+[6])=4([1]+[2]+[3]+[4]+[5]+[5]+[6])=-4$

and by similar manipulatiobsmanipulations

$([1]+[5])([2]+[3])([4]+[6])=2[0]+5([1]+[2]+[3]+[4]+[5]+[6])=-1$

So

$x_1=2[\cos(2\pi/13)+\cos(10\pi/13)]$

$x_2=2[\cos(4\pi/13)+\cos(6\pi/13)]$

$x_3=2[\cos(8\pi/13)+\cos(12\pi/13)]$

solve the equation

$x^3+x^2-4x+1=0.$

Lots of cubic equations can be solved in terms of trigonometric roots, and they do not have to involve angles divisibie by $\pi/7$ or $\pi/9$.

The minimal denominator greater than $9$ for such an equation is $13$. For simplicity I shall render $2\cos(2m\pi)$ as $[m]$ below.

We start with the cyclic-sum relation

$[0]+[1]+[2]+...+[12]=0.$

As $[0]=2$ and $[13-m]=[m]$ this reduces to

$[1]+[2]+[3]+[4]+[5]+[6]=-1,$

and we group these terms into three pairs having the same ratio $\bmod13$:

$([1]+[5])+([2]+[3])+([4]+[6])=-1$

where $5/1\equiv 2/3\equiv 4/6\equiv 5\bmod 13$.

Then $x_1=[1]+[5],x_2=[2]+[3],x_3=[4]+[6]$ have the sum $-1$, and using this sum combined with the trigonometric sum-product ratios we find that the other symmetric sum-product combinations are also integers:

$([1]+[5])([2]+[3])=[1][2]+[1][3]+[5][2]+[5][3]$

$=[1]+[3]+[2]+[4]+[3]+[7]+[2]+[8]$

$=[1]+2[2]+2[3]+[4]+[5]+[6]$

$([1]+[5])([4]+[6])=2[1]+[2]+[3]+[4]+2[5]+[6]$

$([2]+[3])([4]+[6])=[1]+[2]+[3]+2[4]+[5]+6[6]$

$\therefore ([1]+[5])([2]+[3])+([1]+[5])([4]+[6])+([2]+[3])([4]+[6])=4([1]+[2]+[3]+[4]+[5]+[5]+[6])=-4$

and by similar manipulatiobs

$([1]+[5])([2]+[3])([4]+[6])=2[0]+5([1]+[2]+[3]+[4]+[5]+[6])=-1$

So

$x_1=2[\cos(2\pi/13)+\cos(10\pi/13)]$

$x_2=2[\cos(4\pi/13)+\cos(6\pi/13)]$

$x_3=2[\cos(8\pi/13)+\cos(12\pi/13)]$

solve the equation

$x^3+x^2-4x+1=0.$

Lots of cubic equations can be solved in terms of trigonometric roots, and they do not have to involve angles divisibie by $\pi/7$ or $\pi/9$.

The minimal denominator greater than $9$ for such an equation is $13$. For simplicity I shall render $2\cos(2m\pi)$ as $[m]$ below.

We start with the cyclic-sum relation

$[0]+[1]+[2]+...+[12]=0.$

As $[0]=2$ and $[13-m]=[m]$ this reduces to

$[1]+[2]+[3]+[4]+[5]+[6]=-1,$

and we group these terms into three pairs having the same ratio $\bmod13$:

$([1]+[5])+([2]+[3])+([4]+[6])=-1$

where $5/1\equiv 2/3\equiv 4/6\equiv 5\bmod 13$.

Then $x_1=[1]+[5],x_2=[2]+[3],x_3=[4]+[6]$ have the sum $-1$, and using this sum combined with the trigonometric sum-product ratios we find that the other symmetric sum-product combinations are also integers:

$([1]+[5])([2]+[3])=[1][2]+[1][3]+[5][2]+[5][3]$

$=[1]+[3]+[2]+[4]+[3]+[7]+[2]+[8]$

$=[1]+2[2]+2[3]+[4]+[5]+[6]$

$([1]+[5])([4]+[6])=2[1]+[2]+[3]+[4]+2[5]+[6]$

$([2]+[3])([4]+[6])=[1]+[2]+[3]+2[4]+[5]+2[6]$

$\therefore ([1]+[5])([2]+[3])+([1]+[5])([4]+[6])+([2]+[3])([4]+[6])=4([1]+[2]+[3]+[4]+[5]+[5]+[6])=-4$

and by similar manipulations

$([1]+[5])([2]+[3])([4]+[6])=2[0]+5([1]+[2]+[3]+[4]+[5]+[6])=-1$

So

$x_1=2[\cos(2\pi/13)+\cos(10\pi/13)]$

$x_2=2[\cos(4\pi/13)+\cos(6\pi/13)]$

$x_3=2[\cos(8\pi/13)+\cos(12\pi/13)]$

solve the equation

$x^3+x^2-4x+1=0.$

added 1 character in body
Source Link
Oscar Lanzi
  • 51.2k
  • 2
  • 56
  • 137

Lots of cubic equations can be solved in terms of trigonometric roots, and they do not have to involve angles divisibie by $\pi/7$ or $\pi/9$.

The minimal denominator greater than $9$ for such an equation is $13$. For simplicity I shall render $2\cos(2m\pi)$ as $[m]$ below.

We start with the cyclic-sum relation

$[0]+[1]+[2]+...+[12]=0.$

As $[0]=2$ and $[13-m]=[m]$ this reduces to

$[1]+[2]+[3]+[4]+[5]+[6]=-1,$

and we group these terms into three pairs having the same ratio $\bmod13$:

$([1]+[5])+([2]+[3])+([4]+[6])=-1$

where 5/1\equiv 2/3\equiv 4/6\equiv 5\bmod 13$$5/1\equiv 2/3\equiv 4/6\equiv 5\bmod 13$.

Then $x_1=[1]+[5],x_2=[2]+[3],x_3=[4]+[6]$ have the sum $-1$, and using this sum combined with the trigonometric sum-product ratios we find that the other symmetric sum-product combinations are also integers:

$([1]+[5])([2]+[3])=[1][2]+[1][3]+[5][2]+[5][3]$

$=[1]+[3]+[2]+[4]+[3]+[7]+[2]+[8]$

$=[1]+2[2]+2[3]+[4]+[5]+[6]$

$([1]+[5])([4]+[6])=2[1]+[2]+[3]+[4]+2[5]+[6]$

$([2]+[3])([4]+[6])=[1]+[2]+[3]+2[4]+[5]+6[6]$

$\therefore ([1]+[5])([2]+[3])+([1]+[5])([4]+[6])+([2]+[3])([4]+[6])=4([1]+[2]+[3]+[4]+[5]+[5]+[6])=-4$

and by similar manipulatiobs

$([1]+[5])([2]+[3])([4]+[6])=2[0]+5([1]+[2]+[3]+[4]+[5]+[6])=-1$

So

$x_1=2[\cos(2\pi/13)+\cos(10\pi/13)]$

$x_2=2[\cos(4\pi/13)+\cos(6\pi/13)]$

$x_3=2[\cos(8\pi/13)+\cos(12\pi/13)]$

solve the equation

$x^3+x^2-4x+1=0.$

Lots of cubic equations can be solved in terms of trigonometric roots, and they do not have to involve angles divisibie by $\pi/7$ or $\pi/9$.

The minimal denominator greater than $9$ for such an equation is $13$. For simplicity I shall render $2\cos(2m\pi)$ as $[m]$ below.

We start with the cyclic-sum relation

$[0]+[1]+[2]+...+[12]=0.$

As $[0]=2$ and $[13-m]=[m]$ this reduces to

$[1]+[2]+[3]+[4]+[5]+[6]=-1,$

and we group these terms into three pairs having the same ratio $\bmod13$:

$([1]+[5])+([2]+[3])+([4]+[6])=-1$

where 5/1\equiv 2/3\equiv 4/6\equiv 5\bmod 13$.

Then $x_1=[1]+[5],x_2=[2]+[3],x_3=[4]+[6]$ have the sum $-1$, and using this sum combined with the trigonometric sum-product ratios we find that the other symmetric sum-product combinations are also integers:

$([1]+[5])([2]+[3])=[1][2]+[1][3]+[5][2]+[5][3]$

$=[1]+[3]+[2]+[4]+[3]+[7]+[2]+[8]$

$=[1]+2[2]+2[3]+[4]+[5]+[6]$

$([1]+[5])([4]+[6])=2[1]+[2]+[3]+[4]+2[5]+[6]$

$([2]+[3])([4]+[6])=[1]+[2]+[3]+2[4]+[5]+6[6]$

$\therefore ([1]+[5])([2]+[3])+([1]+[5])([4]+[6])+([2]+[3])([4]+[6])=4([1]+[2]+[3]+[4]+[5]+[5]+[6])=-4$

and by similar manipulatiobs

$([1]+[5])([2]+[3])([4]+[6])=2[0]+5([1]+[2]+[3]+[4]+[5]+[6])=-1$

So

$x_1=2[\cos(2\pi/13)+\cos(10\pi/13)]$

$x_2=2[\cos(4\pi/13)+\cos(6\pi/13)]$

$x_3=2[\cos(8\pi/13)+\cos(12\pi/13)]$

solve the equation

$x^3+x^2-4x+1=0.$

Lots of cubic equations can be solved in terms of trigonometric roots, and they do not have to involve angles divisibie by $\pi/7$ or $\pi/9$.

The minimal denominator greater than $9$ for such an equation is $13$. For simplicity I shall render $2\cos(2m\pi)$ as $[m]$ below.

We start with the cyclic-sum relation

$[0]+[1]+[2]+...+[12]=0.$

As $[0]=2$ and $[13-m]=[m]$ this reduces to

$[1]+[2]+[3]+[4]+[5]+[6]=-1,$

and we group these terms into three pairs having the same ratio $\bmod13$:

$([1]+[5])+([2]+[3])+([4]+[6])=-1$

where $5/1\equiv 2/3\equiv 4/6\equiv 5\bmod 13$.

Then $x_1=[1]+[5],x_2=[2]+[3],x_3=[4]+[6]$ have the sum $-1$, and using this sum combined with the trigonometric sum-product ratios we find that the other symmetric sum-product combinations are also integers:

$([1]+[5])([2]+[3])=[1][2]+[1][3]+[5][2]+[5][3]$

$=[1]+[3]+[2]+[4]+[3]+[7]+[2]+[8]$

$=[1]+2[2]+2[3]+[4]+[5]+[6]$

$([1]+[5])([4]+[6])=2[1]+[2]+[3]+[4]+2[5]+[6]$

$([2]+[3])([4]+[6])=[1]+[2]+[3]+2[4]+[5]+6[6]$

$\therefore ([1]+[5])([2]+[3])+([1]+[5])([4]+[6])+([2]+[3])([4]+[6])=4([1]+[2]+[3]+[4]+[5]+[5]+[6])=-4$

and by similar manipulatiobs

$([1]+[5])([2]+[3])([4]+[6])=2[0]+5([1]+[2]+[3]+[4]+[5]+[6])=-1$

So

$x_1=2[\cos(2\pi/13)+\cos(10\pi/13)]$

$x_2=2[\cos(4\pi/13)+\cos(6\pi/13)]$

$x_3=2[\cos(8\pi/13)+\cos(12\pi/13)]$

solve the equation

$x^3+x^2-4x+1=0.$

edited body
Source Link
Oscar Lanzi
  • 51.2k
  • 2
  • 56
  • 137
Loading
edited body
Source Link
Oscar Lanzi
  • 51.2k
  • 2
  • 56
  • 137
Loading
Source Link
Oscar Lanzi
  • 51.2k
  • 2
  • 56
  • 137
Loading