openGauss VectorStore
This notebook covers how to get started with the openGauss VectorStore. openGauss is a high-performance relational database with native vector storage and retrieval capabilities. This integration enables ACID-compliant vector operations within LangChain applications, combining traditional SQL functionality with modern AI-driven similarity search. vector store.
Setup​
Launch openGauss Container​
docker run --name opengauss \
-d \
-e GS_PASSWORD='MyStrongPass@123' \
-p 8888:5432 \
opengauss/opengauss-server:latest
Install langchain-opengauss​
pip install langchain-opengauss
System Requirements:
- openGauss ≥ 7.0.0
- Python ≥ 3.8
- psycopg2-binary
Credentials​
Using your openGauss Credentials
Initialization​
pip install -qU langchain-openai
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
from langchain_opengauss import OpenGauss, OpenGaussSettings
# Configure with schema validation
config = OpenGaussSettings(
table_name="test_langchain",
embedding_dimension=384,
index_type="HNSW",
distance_strategy="COSINE",
)
vector_store = OpenGauss(embedding=embeddings, config=config)
Manage vector store​
Add items to vector store​
from langchain_core.documents import Document
document_1 = Document(page_content="foo", metadata={"source": "https://example.com"})
document_2 = Document(page_content="bar", metadata={"source": "https://example.com"})
document_3 = Document(page_content="baz", metadata={"source": "https://example.com"})
documents = [document_1, document_2, document_3]
vector_store.add_documents(documents=documents, ids=["1", "2", "3"])
Update items in vector store​
updated_document = Document(
page_content="qux", metadata={"source": "https://another-example.com"}
)
# If the id is already exist, will update the document
vector_store.add_documents(document_id="1", document=updated_document)
Delete items from vector store​
vector_store.delete(ids=["3"])
Query vector store​
Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.
Query directly​
Performing a simple similarity search can be done as follows:
- TODO: Edit and then run code cell to generate output
results = vector_store.similarity_search(
query="thud", k=1, filter={"source": "https://another-example.com"}
)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
If you want to execute a similarity search and receive the corresponding scores you can run:
results = vector_store.similarity_search_with_score(
query="thud", k=1, filter={"source": "https://example.com"}
)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
Query by turning into retriever​
You can also transform the vector store into a retriever for easier usage in your chains.
- TODO: Edit and then run code cell to generate output
retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 1})
retriever.invoke("thud")
Usage for retrieval-augmented generation​
For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:
Configuration​
Connection Settings​
Parameter | Default | Description |
---|---|---|
host | localhost | Database server address |
port | 8888 | Database connection port |
user | gaussdb | Database username |
password | - | Complex password string |
database | postgres | Default database name |
min_connections | 1 | Connection pool minimum size |
max_connections | 5 | Connection pool maximum size |
table_name | langchain_docs | Name of the table for storing vector data and metadata |
index_type | IndexType.HNSW | Vector index algorithm type. Options: HNSW or IVFFLAT\nDefault is HNSW. |
vector_type | VectorType.vector | Type of vector representation to use. Default is Vector. |
distance_strategy | DistanceStrategy.COSINE | Vector similarity metric to use for retrieval. Options: euclidean (L2 distance), cosine (angular distance, ideal for text embeddings), manhattan (L1 distance for sparse data), negative_inner_product (dot product for normalized vectors).\n Default is cosine. |
embedding_dimension | 1536 | Dimensionality of the vector embeddings. |
Supported Combinations​
Vector Type | Dimensions | Index Types | Supported Distance Strategies |
---|---|---|---|
vector | ≤2000 | HNSW/IVFFLAT | COSINE/EUCLIDEAN/MANHATTAN/INNER_PROD |
Performance Optimization​
Index Tuning Guidelines​
HNSW Parameters:
m
: 16-100 (balance between recall and memory)ef_construction
: 64-1000 (must be > 2*m)
IVFFLAT Recommendations:
import math
lists = min(
int(math.sqrt(total_rows)) if total_rows > 1e6 else int(total_rows / 1000),
2000, # openGauss maximum
)
Connection Pooling​
OpenGaussSettings(min_connections=3, max_connections=20)
Limitations​
bit
andsparsevec
vector types currently in development- Maximum vector dimensions: 2000 for
vector
type
API reference​
For detailed documentation of all __ModuleName__VectorStore features and configurations head to the API reference: https://python.langchain.com/api_reference/en/latest/vectorstores/opengauss.OpenGuass.html
Related​
- Vector store conceptual guide
- Vector store how-to guides