Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.




Similar content being viewed by others
Data availability
All the available data is been provided in this manuscript only.
References
Abdalhamed A, Ghazy A, Zeedan G (2021) Studies on multidrug-resistance bacteria in ruminants with special interest on antimicrobial resistances genes. Adv Animal Vet Sci. https://doi.org/10.17582/JOURNAL.AAVS/2021/9.6.835.844
Abd El-Aleam RH, George RF, Georgey HH, Abdel-Rahman HM (2021) Bacterial virulence factors: a target for heterocyclic compounds to combat bacterial resistance. RSC Adv 11:36459–36482
Abo-Neima SE, Motaweh HA, Elsehly EM (2020) Antimicrobial activity of functionalised carbon nanotubes against pathogenic microorganisms. IET Nanobiotechnol 14:457–464
Ahmad N, Ali S, Abbas M et al (2023) Antimicrobial efficacy of Mentha piperata-derived biogenic zinc oxide nanoparticles against UTI-resistant pathogens. Sci Rep 13. https://doi.org/10.1038/s41598-023-41502-w
Ali AR, Anani HAA, Selim FM (2021) Biologically formed silver nanoparticles and in vitro study of their antimicrobial activities on resistant pathogens. Iran J Microbiol 13:848
Al-Saeedi M, Al-Hajoj S (2017) Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis. Infect Drug Resist 10:333–342
Andrade FF, Silva D, Rodrigues A, Pina-Vaz C (2020) Colistin update on its mechanism of action and resistance present and future challenges. Microorganisms 8:1716
Andriole VT (2005) The quinolones: past, present, and future. Clin Infect Dis 41(Suppl 2):S113–S119
Antimisiaris SG, Marazioti A, Kannavou M et al (2021) Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 174:53–86
Arsene MMJ, Viktorovna PI, Alla M et al (2023) Antimicrobial activity of phytofabricated silver nanoparticles using Carica papaya L. against Gram-negative bacteria. Vet World 16:1301
Arshia KA, Khan K et al (2017) Antibiofilm potential of synthetic 2-amino-5-chlorobenzophenone Schiff bases and its confirmation through fluorescence microscopy. Microb Pathog 110:497–506
Ashraf N, Ahmad F, Lu Y, Yin D-C (2021) Bacterial extracellular protein interacts with silver ions to produce protein-encapsulated bactericidal AgNPs. Process Biochem 106:120–129
Bajaj P, Singh NS, Virdi JS (2016) Escherichia coli β-lactamases: what really matters. Front Microbiol 7:417
Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 95:9541–9546
Banoee M, Seif S, Nazari ZE et al (2010) ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res B Appl Biomater 93:557–561
Baquero F, Levin B (2020) Proximate and ultimate causes of the bactericidal action of antibiotics. Nat Rev Microbiol. https://doi.org/10.1038/s41579-020-00443-1
Barreto-Santamaría A, Arévalo-Pinzón G, Patarroyo MA, Patarroyo ME (2021) How to combat gram-negative bacteria using antimicrobial peptides: a challenge or an unattainable goal? Antibiotics 10:1499. https://doi.org/10.3390/antibiotics10121499
Bay DC, Rommens KL, Turner RJ (2008) Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 1778:1814–1838
Beceiro A, Tomás M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. https://doi.org/10.1128/CMR.00059-12
Bechinger B, Juhl DW, Glattard E, Aisenbrey C (2020) Revealing the mechanisms of synergistic action of two magainin antimicrobial peptides. Front Med Technol. https://doi.org/10.3389/fmedt.2020.615494
Bevan E, Jones AM, Hawkey P (2017) Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. https://doi.org/10.1093/jac/dkx146
Beyer D, Pepper K (1998) The streptogramin antibiotics: update on their mechanism of action. Expert Opin Investig Drugs 7:591–599
Bhambra R (2021) Targeting antimicrobial resistance. Biopharma Dealmakers. https://doi.org/10.1038/d43747-021-00147-2
Blair JMA, Webber MA, Baylay AJ et al (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51
Blair J, Richmond GE, Piddock L (2014) Multidrug efflux pumps in gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 9:1165–1177
Bo L, Sun H, Li Y-D et al (2024) Combating antimicrobial resistance: the silent war. Front Pharmacol 15. https://doi.org/10.3389/fphar.2024.1347750
Boucher HW, Bakken JS, Murray BE (2016) The United Nations and the urgent need for coordinated global action in the fight against antimicrobial resistance. Ann Intern Med 165:812. https://doi.org/10.7326/M16-2079
Bush K (2013) Proliferation and significance of clinically relevant β-lactamases. Ann N Y Acad Sci. https://doi.org/10.1111/nyas.12023
Bush K (2017) Game changers: new β-lactamase inhibitor combinations targeting antibiotic resistance in gram-negative bacteria. ACS Infect Dis 4:84–87
Bush K, Bradford P (2016) β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med 6:a025247
Bush K, Jacoby G (2009) Updated functional classification of β-lactamases. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01009-09
Canaparo R, Foglietta F, Giuntini F et al (2019) Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules 24:1991. https://doi.org/10.3390/molecules24101991
Chalabaev S, Chauhan A, Novikov A et al (2014) Biofilms formed by gram-negative bacteria undergo increased lipid A palmitoylation, enhancing in vivo survival. mBio 5. https://doi.org/10.1128/mBio.01116-14
Chancey ST, Zähner D, Stephens D (2012) Acquired inducible antimicrobial resistance in gram-positive bacteria. Future Microbiol 7:959–978
Chastre J, François B, Bourgeois M et al (2022) Safety, efficacy, and pharmacokinetics of gremubamab (MEDI3902), an anti-Pseudomonas aeruginosa bispecific human monoclonal antibody, in P. aeruginosa-colonised, mechanically ventilated intensive care unit patients: a randomised controlled trial. Crit Care 26:355. https://doi.org/10.1186/s13054-022-04204-9
Chen C, Pan F, Zhang S et al (2010) Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromol 11:402–411
Chen X, Schneewind O, Missiakas D (2022) Engineered human antibodies for the opsonization and killing of Staphylococcus aureus. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2114478119
Cole KA, Rivard KR, Dumkow LE (2019) Antimicrobial stewardship interventions to combat antibiotic resistance: an update on targeted strategies. Curr Infect Dis Rep 21:33. https://doi.org/10.1007/s11908-019-0689-2
Collu F, Cascella M (2013) Multidrug resistance and efflux pumps: insights from molecular dynamics simulations. Curr Top Med Chem 13:3165–3183
Cooke P, Shrestha A, Arjyal A et al (2020) What is “antimicrobial resistance” and why should anyone make films about it? Using “participatory video” to advocate for community-led change in public health. New Cine J Contemp Film 17:85–107. https://doi.org/10.1386/ncin_00006_1
Coque TM, Cantón R, Pérez-Cobas AE et al (2023) Antimicrobial resistance in the global health network: known unknowns and challenges for efficient responses in the 21st century. Microorganisms 11:1050. https://doi.org/10.3390/microorganisms11041050
Correia S, Poeta P, Hébraud M et al (2017) Mechanisms of quinolone action and resistance: where do we stand? J Med Microbiol 66:551–559
Costa SS, Viveiros M, Amaral L, Couto I (2013) Multidrug efflux pumps in Staphylococcus aureus: an update. Open Microbiol J 7:59–71
Cox G, Wright GD (2013) Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 303:287–292
Cui F, Li T, Wang D et al (2022) Recent advances in carbon-based nanomaterials for combating bacterial biofilm-associated infections. J Hazard Mater 431:128597
Darby EM, Trampari E, Siasat P et al (2022) Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 21:280–295
Davarpanah AM, Rahdar A, Dastnae MA et al (2019) (1–x)BaFe12O19/ xCoFe2O4 hard/soft magnetic nanocomposites: synthesis, physical characterization, and antibacterial activities study. J Mol Struct 1175:445–449
Davis BD, Chen L, Tai P (1986) Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc Natl Acad Sci U S A 83:6164–6168
de la Fuente-Nunez C, Reffuveille F, Haney EF et al (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10:e1004152
Deshayes C, Arafath MN, Apaire-Marchais V, Roger E (2022) Drug delivery systems for the oral administration of antimicrobial peptides: promising tools to treat infectious diseases. Front Med Technol 3:778645
Dever LA, Dermody TS (1991) Mechanisms of bacterial resistance to antibiotics. Arch Intern Med 151:886–895
Directorate-General for Health and Food Safety (2016) Council conclusions on the next steps under a one health approach to combat antimicrobial resistance. In: Public Health. https://health.ec.europa.eu/publications/council-conclusions-next-steps-under-one-health-approach-combat-antimicrobial-resistance_en. Accessed 25 Apr 2024
Docquier J, Mangani S (2018) An update on β-lactamase inhibitor discovery and development. Drug Resist Updat 36:13–29
Dogra V, Kaur G, Jindal S et al (2019) Bactericidal effects of metallosurfactants based cobalt oxide/hydroxide nanoparticles against Staphylococcus aureus. Sci Total Environ 681:350–364
Doi Y, Wachino J, Arakawa Y (2016) Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin North Am 30:523–537
Dupuis V, Cerbu C, Witkowski L et al (2022) Nanodelivery of essential oils as efficient tools against antimicrobial resistance: a review of the type and physical-chemical properties of the delivery systems and applications. Drug Deliv 29:1007
Dürr UHN, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758:1408–1425
Dutt Y, Dhiman R, Singh T et al (2022) The association between biofilm formation and antimicrobial resistance with possible ingenious bio-remedial approaches. Antibiotics 11:930. https://doi.org/10.3390/antibiotics11070930
Eiamphungporn W, Schaduangrat N, Malik AA, Nantasenamat C (2018) Tackling the antibiotic resistance caused by class A β-lactamases through the use of β-lactamase inhibitory protein. Int J Mol Sci 19:2222. https://doi.org/10.3390/ijms19082222
Eleraky NE, Allam A, Hassan SB, Omar MM (2020) Nanomedicine fight against antibacterial resistance: an overview of the recent pharmaceutical innovations. Pharmaceutics 12:142. https://doi.org/10.3390/pharmaceutics12020142
El Malah T, Soliman HA, Hemdan B et al (2021) Synthesis and antibiofilm activity of 1,2,3-triazole-pyridine hybrids against methicillin-resistant Staphylococcus aureus (MRSA). New J Chem. https://doi.org/10.1039/D1NJ00773D
El-Messery SM, Habib EE, Al-Rashood STA, Hassan GS (2018) Synthesis, antimicrobial, anti-biofilm evaluation, and molecular modelling study of new chalcone linked amines derivatives. J Enzyme Inhib Med Chem. https://doi.org/10.1080/14756366.2018.1461855
Fadaka AO, Sibuyi NRS, Madiehe AM, Meyer M (2021) Nanotechnology-based delivery systems for antimicrobial peptides. Pharmaceutics 13:1795. https://doi.org/10.3390/pharmaceutics13111795
Falugi F, Kim H, Missiakas D, Schneewind O (2013) Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. Mbio. https://doi.org/10.1128/mBio.00575-13
Fan Y, Li X-D, He P-P et al (2020) A biomimetic peptide recognizes and traps bacteria in vivo as human defensin-6. Sci Adv 6:eaaz4767
Fattom A, Matalon A, Buerkert J et al (2015) Efficacy profile of a bivalent Staphylococcus aureus glycoconjugated vaccine in adults on hemodialysis: phase III randomized study. Hum Vaccin Immunother. https://doi.org/10.4161/hv.34414
Feng X, Sambanthamoorthy K, Palys T, Paranavitana C (2013) The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides 49:131–137
Feng W, Li G, Kang X et al (2022) Cascade-targeting poly(amino acid) nanoparticles eliminate intracellular bacteria via on-site antibiotic delivery. Adv Mater 34:e2109789
Ferber D (2005) Biochemistry. Protein that mimics DNA helps tuberculosis bacteria resist antibiotics. Science 308:1393
Fernández L, Hancock RE (2012) Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 25:661–681. https://doi.org/10.1128/CMR.00043-12
Fernebro J (2011) Fighting bacterial infections-future treatment options. Drug Resist Updat 14:125–139
Finco O, Rappuoli R (2014) Designing vaccines for the twenty-first century society. Front Immunol 5:12. https://doi.org/10.3389/fimmu.2014.00012
Fischetti VA (2018) Development of phage lysins as novel therapeutics: a historical perspective. Viruses 10:310. https://doi.org/10.3390/v10060310
Flores-González M, Talavera-Rojas M, Soriano-Vargas E, Rodríguez-González V (2018) Practical mediated-assembly synthesis of silver nanowires using commercial Camellia sinensis extracts and their antibacterial properties. New J Chem 42:2133–2139
Floss H, Yu T (2005) Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev 105:621–632
Fowler V, Allen K, Moreira ED et al (2013) Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 309:1368
Friedman N, Temkin E, Carmeli Y (2016) The negative impact of antibiotic resistance. Clin Microbiol Infect 22:416–422
Fuchs PC, Barry AL, Brown SD (1998) In vitro antimicrobial activity of MSI-78, a magainin analog. Antimicrob Agents Chemother 42:1213–1216
Gao J, Wang S, Dong X et al (2020) Co-delivery of resolvin D1 and antibiotics with nanovesicles to lungs resolves inflammation and clears bacteria in mice. Commun Biol 3:680
Garvey M (2020) Bacteriophages and the one health approach to combat multidrug resistance: is this the way? Antibiotics 9:414. https://doi.org/10.3390/antibiotics9070414
Gaurav A, Bakht P, Saini M et al (2023) Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors: this article is part of the antimicrobial efflux collection. Microbiology 169:001333
Gaviria-Agudelo CL, Jordan-Villegas A, Garcia C, McCracken GH (2017) The effect of 13-valent pneumococcal conjugate vaccine on the serotype distribution and antibiotic resistance profiles in children with invasive pneumococcal disease. J Pediatr Infect Diseases Soc 6:253–259. https://doi.org/10.1093/jpids/piw005
Ge Y, MacDonald DL, Holroyd KJ et al (1999) In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother 43:782–788
Giacometti A, Cirioni O, Ghiselli R et al (2005) Effects of pexiganan alone and combined with betalactams in experimental endotoxic shock. Peptides 26:207–216
Gleckman R, Blagg N, Joubert D (1981) Trimethoprim: mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacotherapy. https://doi.org/10.1002/j.1875-9114.1981.tb03548.x
Golkar T, Zieliński M, Berghuis AM (2018) Look and outlook on enzyme-mediated macrolide resistance. Front Microbiol 9:1942. https://doi.org/10.3389/fmicb.2018.01942
Gondru R, Sirisha K, Raj S et al (2018) Design, synthesis, in vitro evaluation and docking studies of pyrazole-thiazole hybrids as antimicrobial and antibiofilm agents. ChemistrySelect. https://doi.org/10.1002/SLCT.201801391
González-Bello C, Rodríguez D, Pernas M et al (2019) β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J Med Chem. https://doi.org/10.1021/acs.jmedchem.9b01279
Greenlee-Wacker M, DeLeo FR, Nauseef WM (2015) How methicillin-resistant Staphylococcus aureus evade neutrophil killing. Curr Opin Hematol 22:30–35
Gudkov SV, Burmistrov DE, Serov DA et al (2021) A mini review of antibacterial properties of ZnO nanoparticles. Front Phys 9. https://doi.org/10.3389/fphy.2021.641481
Hadiya S, Ibrahim R, Abd El-Baky RA et al (2022) Nanoparticles based combined antimicrobial drug delivery system as a solution for bacterial resistance. Bull Pharm Sci Assiut. https://doi.org/10.21608/bfsa.2022.124546.1301
Hajipour MJ, Saei AA, Walker ED et al (2021) Nanotechnology for targeted detection and removal of bacteria: opportunities and challenges. Adv Sci Lett 8:e2100556. https://doi.org/10.1002/advs.202100556
Hall CW, Mah T-F (2017) Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41:276–301
Hassan KA, Liu Q, Elbourne LDH et al (2018) Pacing across the membrane: the novel PACE family of efflux pumps is widespread in gram-negative pathogens. Res Microbiol 169:450–454. https://doi.org/10.1016/j.resmic.2018.01.001
Hawkey P (2003) Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 51:29–35
Hayat P, Khan I, Rehman A et al (2023) Myogenesis and analysis of antimicrobial potential of silver nanoparticles (AgNPs) against pathogenic bacteria. Molecules 28:637. https://doi.org/10.3390/molecules28020637
Hegde SS, Vetting MW, Roderick SL et al (2005) A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science 308:1480–1483
Heikinheimo A (2015) One health approach needed to combat antimicrobial resistance 127:550–553
He Y, Lei J, Pan X et al (2020) The hydrolytic water molecule of class A β-lactamase relies on the acyl-enzyme intermediate ES* for proper coordination and catalysis. Sci Rep 10:1–13
Hiramatsu K, Hanaki H, Ino T et al (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40:135–136
Hoelzer K, Wong N, Thomas J et al (2017) Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence? BMC Vet Res 13. https://doi.org/10.1186/s12917-017-1131-3
Hou Z, Zhang B, She P et al (2021) Anti-planktonic and anti-biofilm effects of two synthetic anti-microbial peptides against Staphylococcus epidermidis. Zhong Nan Da Xue Xue Bao Yi Xue Ban 46:481–487. https://doi.org/10.11817/j.issn.1672-7347.2021.200360
Huang Y-Y, Rajda PJ, Szewczyk G et al (2019) Sodium nitrite potentiates antimicrobial photodynamic inactivation: possible involvement of peroxynitrate. Photochem Photobiol Sci 18:505–515
Huang Z, Zhang X, Yao Z et al (2023) Thymol-decorated gold nanoparticles for curing clinical infections caused by bacteria resistant to last-resort antibiotics. mSphere 8. https://doi.org/10.1128/msphere.00549-22
Hu D, Li H, Wang B et al (2017) Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus biofilm. ACS Nano 11:9330–9339
Huovinen P, Sundström L, Swedberg G, Sköld O (1995) Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.39.2.279
Iwahori A, Hirota Y, Sampe R et al (1997) On the antibacterial activity of normal and reversed magainin 2 analogs against Helicobacter pylori. Biol Pharm Bull 20:805–808
Jacoby G (2009) AmpC β-Lactamases. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00036-08
Jahangiri A, Neshani A, Mirhosseini S et al (2020) Synergistic effect of two antimicrobial peptides, Nisin and P10 with conventional antibiotics against extensively drug-resistant Acinetobacter baumannii and colistin-resistant Pseudomonas aeruginosa isolates. Microb Pathog 150:104700
Jangra M, Raka V, Nandanwar H (2020) In vitro evaluation of antimicrobial peptide tridecaptin m in combination with other antibiotics against multidrug resistant Acinetobacter baumannii. Molecules 25:3255
Javed MU, Hayat MT, Mukhtar H, Imre K (2023) CRISPR-Cas9 system: a prospective pathway toward combatting antibiotic resistance. Antibiotics 12:1075. https://doi.org/10.3390/antibiotics12061075
Jerala R (2007) Synthetic lipopeptides: a novel class of anti-infectives. Expert Opin Investig Drugs. https://doi.org/10.1517/13543784.16.8.1159
ea00f030-8a9d-445c-bbfe-73352aae0029">Jiang K, Yan X, Yu J et al (2020) Design, synthesis, and biological evaluation of 3-amino-2-oxazolidinone derivatives as potent quorum-sensing inhibitors of Pseudomonas aeruginosa PAO1. Eur J Med Chem 194:112252
Jiang L, Su C, Ye S et al (2018) Synergistic antibacterial effect of tetracycline hydrochloride loaded functionalized graphene oxide nanostructures. Nanotechnology 29:505102
Jing Z-W, Jia Y-Y, Wan N et al (2016) Design and evaluation of novel pH-sensitive ureido-conjugated chitosan/TPP nanoparticles targeted to Helicobacter pylori. Biomaterials 84:276–285
Jo I, Hong S, Lee M et al (2017) Stoichiometry and mechanistic implications of the MacAB-TolC tripartite efflux pump. Biochem Biophys Res Commun 494:668–673
Jonas BM, Murray B, Weinstock G (2001) Characterization of emeA, a norA homolog and multidrug resistance efflux pump, in Enterococcus faecalis. Antimicrob Agents Chemother 45:3574–3579
Junaid M, Thirapanmethee K, Khuntayaporn P, Chomnawang MT (2023) CRISPR-based gene editing in Acinetobacter baumannii to combat antimicrobial resistance. Pharmaceuticals 16:920. https://doi.org/10.3390/ph16070920
Kalita S, Kandimalla R, Sharma KK et al (2016) Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater Sci Eng C Mater Biol Appl 61:720–727
Khalil AT, Ovais M, Ullah I et al (2020) Physical properties, biological applications and biocompatibility studies on biosynthesized single phase cobalt oxide (Co3O4) nanoparticles via Sageretia thea (Osbeck.). Arab J Chem 13:606–619
Khan F, Kaduskar RN, Patil R et al (2019a) Synthesis, biological evaluations and computational studies of N-(3-(-2-(7-Chloroquinolin-2-yl)vinyl) benzylidene)anilines as fungal biofilm inhibitors. Bioorg Med Chem Lett 29:623–630
Khan F, Lee J-W, Manivasagan P et al (2019b) Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microb Pathog 135:103623
Kim Y-M, Son H, Park S-C et al (2023) Anti-biofilm effects of rationally designed peptides against planktonic cells and pre-formed biofilm of Pseudomonas aeruginosa. Antibiotics 12:349. https://doi.org/10.3390/antibiotics12020349
Kong C, Chee C, Richter K et al (2018) Suppression of Staphylococcus aureus biofilm formation and virulence by a benzimidazole derivative, UM-C162. Sci Rep. https://doi.org/10.1038/s41598-018-21141-2
Kotb A, Abutaleb NS, Seleem MA et al (2018) Phenylthiazoles with tert-butyl side chain: metabolically stable with anti-biofilm activity. Eur J Med Chem 151:110–120
Kourtesi C, Ball A, Huang Y-Y et al. Send Orders of Reprints at Reprints@benthamscience.net Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation
Kourtesi C, Ball AR, Huang Y-Y et al (2013) Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. Open Microbiol J 7:34–52
Kumar A, Schweizer H (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 57:1486–1513
Kumar SH, Mukherjee M, Varela M (2013) Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int J Syst Bacteriol 2013:1–15
Kuroda T, Tsuchiya T (2009) Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 1794:763–768
Lahlaoui H, Khalifa ABH, Moussa M (2014) Epidemiology of Enterobacteriaceae producing CTX-M type extended spectrum β-lactamase (ESBL). Med Mal Infect 44:400–404
Lakshmaiah NJ, Golla R, Mishra B et al (2021) Short and robust anti-infective lipopeptides engineered based on the minimal antimicrobial peptide KR12 of human LL-37. ACS Infect Dis 7:1795–1808. https://doi.org/10.1021/acsinfecdis.1c00101
Langford D, Hiller J (1984) Prospective, controlled study of a polyvalent pseudomonas vaccine in cystic fibrosis—three year results. Arch Dis Child. https://doi.org/10.1136/adc.59.12.1131
Lara HH, Ayala-Núñez NV, del Carmen Ixtepan Turrent L, Rodríguez Padilla C (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621
Leech J, Dhariwala M, Lowe MM et al (2019) Toxin-triggered interleukin-1 receptor signaling enables early-life discrimination of pathogenic versus commensal skin bacteria. Cell Host Microbe 11:795–809
Lee Y, Thompson DH (2017) Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9. https://doi.org/10.1002/wnan.1450
Lehar S, Pillow TH, Xu M et al (2015) Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature. https://doi.org/10.1038/nature16057
Leone S, Cascella M, Pezone I, Fiore M (2019) New antibiotics for the treatment of serious infections in intensive care unit patients. Curr Med Res Opin 35. https://doi.org/10.1080/03007995.2019.1583025
Lepper HC, Woolhouse MEJ, van Bunnik BAD (2022) The role of the environment in dynamics of antibiotic resistance in humans and animals: a modelling study. Antibiotics 11. https://doi.org/10.3390/antibiotics11101361
Li L-L, Xu J-H, Qi G-B et al (2014) Core-shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS Nano 8:4975–4983
Lima LM, Silva B, Barbosa G, Barreiro E (2020) β-lactam antibiotics: an overview from a medicinal chemistry perspective. Eur J Med Chem 208:112829
Lima R, Del Fiol FS, Balcão VM (2019) Prospects for the use of new technologies to combat multidrug-resistant bacteria. Front Pharmacol 10: https://doi.org/10.3389/fphar.2019.00692
Lindstedt K, Buczek D, Pedersen T et al (2022) Detection of Klebsiella pneumoniae human gut carriage: a comparison of culture, qPCR, and whole metagenomic sequencing methods. Gut Microbes. https://doi.org/10.1080/19490976.2022.2118500
Li T, Wang Z, Han H et al (2020) Dual antibacterial activities and biofilm eradication of a marine peptide-N6NH2 and its analogs against multidrug-resistant Aeromonas veronii. Int J Mol Sci 21:9637
Liu J, Zhang X, Zou P et al (2022) Peptide-based nano-antibiotic transformers with antibiotic adjuvant effect for multidrug resistant bacterial pneumonia therapy. Nano Today 44:101505
Liu Y-Y, Wang Y, Walsh T et al (2015) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168
Long K, Poehlsgaard J, Kehrenberg C et al (2006) The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00131-06
Lorusso AB, Carrara JA, Barroso CDN et al (2022) Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int J Mol Sci 23:15779
Lubelski J, Konings WN, Driessen AJM (2007) Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 71:463–476
Lu R, Hwang Y-C, Liu I et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. https://doi.org/10.1186/s12929-019-0592-z
Mah T-FC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39
Malekkhaiat Häffner S, Parra-Ortiz E, Skoda MWA et al (2021) Composition effects on photooxidative membrane destabilization by TiO nanoparticles. J Colloid Interface Sci 584:19–33
Malik IA (2019) Detection of aminoglycoside-acetyl transferase enzyme gene (aac(6’)-Ib-cr) among ciprofloxacin resistant isolates from the Sudan. Int J Curr Microbiol Appl Sci. https://doi.org/10.20546/ijcmas.2019.808.027
Markley JL, Wencewicz T (2018) Tetracycline-Inactivating Enzymes. Front Microbiol
Martinez JL, Sánchez MB, Martínez-Solano L et al (2009) Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–449
Mayorga-Ramos A, Zúñiga-Miranda J, Carrera-Pacheco SE et al (2023) CRISPR-cas-based antimicrobials: design, challenges, and bacterial mechanisms of resistance. ACS Infect Dis 9:1283
Mba IE, Nweze EI (2022) Focus: antimicrobial resistance: antimicrobial peptides therapy: an emerging alternative for treating drug-resistant bacteria. Yale J Biol Med 95:445
Melo MN, Castanho MARB (2007) Omiganan interaction with bacterial membranes and cell wall models. Assigning a biological role to saturation. Biochim Biophys Acta 1768:1277–1290
Melo MN, Dugourd D, Castanho MARB (2006) Omiganan pentahydrochloride in the front line of clinical applications of antimicrobial peptides. Recent Pat Antiinfect Drug Discov 1:201–207
Menazea AA, Awwad NS (2020) Antibacterial activity of TiO2 doped ZnO composite synthesized via laser ablation route for antimicrobial application. J Jpn Res Inst Adv Copper Base Mater Technol 9:9434–9441
Merabishvili M, Pirnay JP, Verbeken G et al (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 4:e4944. https://doi.org/10.1371/journal.pone.0004944
Micoli F, Bagnoli F, Rappuoli R, Serruto D (2021) The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol 19:287
Miranda C, Silva V, Igrejas G, Poeta P (2021) Impact of European pet antibiotic use on enterococci and staphylococci antimicrobial resistance and human health. Future Microbiol 16:185–203. https://doi.org/10.2217/fmb-2020-0119
Mishra NN, Bayer AS, Weidenmaier C et al (2014) Phenotypic and genotypic characterization of daptomycin-resistant methicillin-resistant Staphylococcus aureus strains: relative roles of mprF and dlt operons. PLoS ONE 9:e107426
Mistry S, Roy S, Maitra NJ et al (2016) A novel, multi-barrier, drug eluting calcium sulfate/biphasic calcium phosphate biodegradable composite bone cement for treatment of experimental MRSA osteomyelitis in rabbit model. J Control Release 239:169–181
Moffatt JH, Harper M, Harrison P et al (2010) Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00834-10
Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14
Montero C, Mateu G, Rodriguez R, Takiff H (2001) Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA. Antimicrob Agents Chemother 45:3387–3392
Moore MR, Link-Gelles R, Schaffner W et al (2015) Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis 15:301–309. https://doi.org/10.1016/S1473-3099(14)71081-3
Morley V, Kinnear CL, Sim D et al (2020) An adjunctive therapy administered with an antibiotic prevents enrichment of antibiotic-resistant clones of a colonizing opportunistic pathogen. bioRxiv
Mu H, Liu Q, Niu H et al (2016) Gold nanoparticles make chitosan–streptomycin conjugates effective towards gram-negative bacterial biofilm. RSC Adv 6:8714–8721
Murray IA, Shaw WV (1997) O-Acetyltransferases for chloramphenicol and other natural products. Antimicrob Agents Chemother 41:1–6. https://doi.org/10.1128/AAC.41.1.1
Murugaiyan J, Anand Kumar P, Srinivasa Rao G et al (2022) Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics 11:200. https://doi.org/10.3390/antibiotics11020200
Nale JY, Spencer J, Hargreaves KR et al (2015) Bacteriophage combinations significantly reduce clostridium difficile growth in vitro and proliferation in vivo. Antimicrob Agents Chemother 60:968–981. https://doi.org/10.1128/AAC.01774-15
Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5:452–456
Nawaz A, Ali SM, Rana NF et al (2021) Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: an in vivo assessment. Nanomaterials 11:3152. https://doi.org/10.3390/nano11113152
Nichol KL, Nordin JD, Nelson DB et al (2007) Effectiveness of influenza vaccine in the community-dwelling elderly. N Engl J Med 357:1373–1381. https://doi.org/10.1056/NEJMoa070844
Nikolaev YA, Tutel’yan AV, Loiko N et al (2020) The use of 4-Hexylresorcinol as antibiotic adjuvant. PLoS ONE 15:e0239147
Nogales A, Martínez-Sobrido L (2016) Reverse genetics approaches for the development of influenza vaccines. Int J Mol Sci 18:20. https://doi.org/10.3390/ijms18010020
Novotna G, Janata J (2006) A new evolutionary variant of the streptogramin a resistance protein, Vga(A)LC, from Staphylococcus haemolyticus with shifted substrate specificity towards lincosamides. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00799-06
O’grady NP, Alexander M, Dellinger EP et al (2002) Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control 30:476–489
Pachori P, Gothalwal R, Gandhi P (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis 6:109–119
Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720
Panáček A, Kvítek L, Smékalová M et al (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13:65–71
Parker N, Schneegurt M, Tu A-HT et al (2016) 14.5 Drug resistance. In: Microbiology. https://openstax.org/books/microbiology/pages/14-5-drug-resistance. Accessed 28 Mar 2024
Park S-C, Lee M-Y, Kim J-Y et al (2019) Anti-biofilm effects of synthetic antimicrobial peptides against drug-resistant Pseudomonas aeruginosa and Staphylococcus aureus planktonic cells and biofilm. Molecules 24:4560. https://doi.org/10.3390/molecules24244560
Patra P, Mitra S, Debnath N et al (2014) Ciprofloxacin conjugated zinc oxide nanoparticle: a camouflage towards multidrug resistant bacteria. Bull Mater Sci 37:199–206
Patrulea V, Borchard G, Jordan O (2020) An update on antimicrobial peptides (AMPs) and their delivery strategies for wound infections. Pharmaceutics 12:840. https://doi.org/10.3390/pharmaceutics12090840
Paul P, Chakraborty P, Chatterjee A et al (2020) 1,4-Naphthoquinone accumulates reactive oxygen species in Staphylococcus aureus: a promising approach towards effective management of biofilm threat. Arch Microbiol. https://doi.org/10.1007/s00203-020-02117-1
Pendleton JN, Gorman S, Gilmore B (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. https://doi.org/10.1586/eri.13.12
Pfeifer Y, Cullik A, Witte W (2010) Resistance to cephalosporins and carbapenems in gram-negative bacterial pathogens. Int J Med Microbiol 300:371–379
Piddock L (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. https://doi.org/10.1128/CMR.19.2.382-402.2006
Pietrocola G, Nobile G, Rindi S, Speziale P (2017) Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. Front Cell Infect Microbiol 7:166
Poehlsgaard J, Douthwaite S (2005) The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro1265
Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Annals Medicus. https://doi.org/10.1080/07853890701195262
Pormohammad A, Nasiri MJ, Azimi T (2019) Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infect Drug Resist 12:1181
Portelinha J, Angeles-Boza A (2021) The antimicrobial peptide gad-1 clears Pseudomonas aeruginosa biofilms under cystic fibrosis conditions. ChemBioChem. https://doi.org/10.1002/cbic.202000816
Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693
Qian W, Li X, Yang M et al (2022) Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Escherichia coli isolates from Ningbo, China. Individ Differ Res 15:2865–2878
Qi G-B, Gao Y-J, Wang L, Wang H (2018) Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv Mater 30:e1703444
Rabiee N, Ahmadi S, Akhavan O, Luque R (2022) Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria. Materials 15:1799. https://doi.org/10.3390/ma15051799
Rad MR, Kazemian H, Yazdani F et al (2018) Antibacterial activity of gold nanoparticles conjugated by aminoglycosides against isolates from burn patients. Recent Pat Antiinfect Drug Discov 13:256–264
Ramamoorthy A, Thennarasu S, Lee D-K et al (2006) Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Biophys J 91:206–216
Randall C, Mariner KR, Chopra I, O’Neill A (2012) The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02005-12
Redgrave LS, Sutton SB, Webber M, Piddock L (2014) Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22:438–445
Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4:482
Rh AE-A, George RF, Georgey HH, Abdel-Rahman HM (2021) Bacterial virulence factors: a target for heterocyclic compounds to combat bacterial resistance. RSC Adv 11. https://doi.org/10.1039/d1ra06238g
Riaz S, Fatima Rana N, Hussain I et al (2020) Effect of flavonoid-coated gold nanoparticles on bacterial colonization in mice organs. Nanomaterials 10. https://doi.org/10.3390/nano10091769
Rice LB (2012) Mechanisms of resistance and clinical relevance of resistance to β-lactams, glycopeptides, and fluoroquinolones. Mayo Clin Proc 87:198
Rima M, Rima M, Fajloun Z et al (2021) Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics 10:1095. https://doi.org/10.3390/antibiotics10091095
Riool M, de Breij A, de Boer L et al (2017) Controlled release of LL-37-derived synthetic antimicrobial and anti-biofilm peptides SAAP-145 and SAAP-276 prevents experimental biomaterial-associated staphylococcus aureus infection. Adv Funct Mater. https://doi.org/10.1002/adfm.201606623
Roberts M (2003) Tetracycline therapy: update. Clin Infect Dis 36:462–467
Roberts M (2004) Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol. https://doi.org/10.1385/MB:28:1:47
Roberts M (2008) Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett 282:147–159
Rosini R, Nicchi S, Pizza M, Rappuoli R (2020) Vaccines against antimicrobial resistance. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.01048
Rouquette-Loughlin C, Dunham SA, Kuhn M et al (2003) The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 185:1101–1106
Sadat Z, Farrokhi-Hajiabad F, Lalebeigi F et al (2022) A comprehensive review on the applications of carbon-based nanostructures in wound healing: from antibacterial aspects to cell growth stimulation. Biomater Sci 10:6911–6938
Sahota JS, Smith CM, Radhakrishnan P et al (2015) Bacteriophage delivery by nebulization and efficacy against phenotypically diverse Pseudomonas aeruginosa from cystic fibrosis patients. J Aerosol Med Pulm Drug Deliv 28:353–360. https://doi.org/10.1089/jamp.2014.1172
Sawasdidoln C, Taweechaisupapong S, Sermswan RW et al (2010) Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS ONE 5:e9196. https://doi.org/10.1371/journal.pone.0009196
Schiffelers R, Storm G, Bakker-Woudenberg I (2001) Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. J Antimicrob Chemother 48:333–344
Schultsz C, Geerlings S (2012) Plasmid-mediated resistance in Enterobacteriaceae. Drugs. https://doi.org/10.2165/11597960-000000000-00000
Schwarz S, Shen J, Kadlec K et al (2016) Lincosamides, streptogramins, phenicols, and pleuromutilins: mode of action and mechanisms of resistance. Cold Spring Harb Perspect Med
Schwarz S, Zhang W, Du X-D et al (2021) Mobile oxazolidinone resistance genes in gram-positive and gram-negative bacteria. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00188-20
Scott MG, Davidson DJ, Gold MR et al (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169:3883–3891
Sharkey LKR, Edwards T, O’Neill A (2016) ABC-F proteins mediate antibiotic resistance through ribosomal protection. Mbio. https://doi.org/10.1128/mBio.01975-15
Sharma A, Krause A, Worgall S (2011) Recent developments for Pseudomonas vaccines. Hum Vaccin. https://doi.org/10.4161/hv.7.10.16369
Shirzadi-Ahodashti M, Mizwari ZM, Hashemi Z et al (2021) Discovery of high antibacterial and catalytic activities of biosynthesized silver nanoparticles using C. fruticosus (CF-AgNPs) against multi-drug resistant clinical strains and hazardous pollutants. Environ Technol Innov 23:101607
Singh R, Dwivedi SP, Gaharwar US et al (2020) Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol 128:1547–1567. https://doi.org/10.1111/jam.14478
Sivasankar C, Lloren KKS, Lee JH (2024) Deciphering the interrelationship of arnT involved in lipid-A alteration with the virulence of Salmonella typhimurium. Int J Mol Sci 25:2760. https://doi.org/10.3390/ijms25052760
Si Y, Zhao F, Beesetty P et al (2020) Inhibition of protective immunity against Staphylococcus aureus infection by MHC-restricted immunodominance is overcome by vaccination. Sci Adv. https://doi.org/10.1126/sciadv.aaw7713
Sköld O (2000) Sulfonamide resistance: mechanisms and trends. Drug Resist Updat 3:155–160
Spížek J, Řezanka T (2017) Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2016.12.001
Stefani S, Campanile F, Santagati M et al (2015) Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: a review of the available evidence. Int J Antimicrob Agents 46:278–289
Stogios P, Savchenko A (2020) Molecular mechanisms of vancomycin resistance. Protein Sci. https://doi.org/10.1002/pro.3819
Swaney S, Aoki H, Ganoza M, Shinabarger D (1998) The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.42.12.3251
Swierstra J, Debets S, de Vogel CD et al (2014) IgG4 subclass-specific responses to Staphylococcus aureus antigens shed new light on host-pathogen interaction. Infect Immun. https://doi.org/10.1128/IAI.02286-14
Tagliabue A, Rappuoli R (2018) Changing priorities in vaccinology: antibiotic resistance moving to the top. Front Immunol 9:1068. https://doi.org/10.3389/fimmu.2018.01068
Talapko J, Meštrović T, Juzbašić M et al (2022) Antimicrobial peptides—mechanisms of action, antimicrobial effects and clinical applications. Antibiotics 11:1417. https://doi.org/10.3390/antibiotics11101417
Tanabe M, Szakonyi G, Brown K et al (2009) The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochem Biophys Res Commun 380:338–342
Tan P, Tang Q, Xu S et al (2022) Designing self-assembling chimeric peptide nanoparticles with high stability for combating piglet bacterial infections. Adv Sci 9:e2105955
Tenover F (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 34:S3–S10
Terreni M, Taccani M, Pregnolato M (2021) New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules 26:2671. https://doi.org/10.3390/molecules26092671
Thomson KS (2010) Extended-spectrum-β-lactamase, AmpC, and Carbapenemase issues. J Clin Microbiol. https://doi.org/10.1128/jcm.00219-10
Todosiichuk TS, Soloviov SO, Wu L et al (2022) Directions in the development of modern and promising antimicrobial agents. Liet Tsr Aukst Mokyklu Mokslo Darb. https://doi.org/10.6001/biologija.v68i4.4838
Torbati TV, Javanbakht V (2020) Fabrication of TiO2/Zn2TiO4/Ag nanocomposite for synergic effects of UV radiation protection and antibacterial activity in sunscreen. Colloids Surf B Biointerfaces 187:110652
Tran T, Munita J, Arias C (2015) Mechanisms of drug resistance: daptomycin resistance. Ann N Y Acad Sci. https://doi.org/10.1111/nyas.12948
Truong-Bolduc QC, Dunman P, Strahilevitz J et al (2005) MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol. https://doi.org/10.1128/JB.187.7.2395-2405.2005
Tsai C-M, Caldera J, Hajam I et al (2022) Non-protective immune imprint underlies failure of Staphylococcus aureus IsdB vaccine. Cell Host Microbe 30:1163-1172.e6
Umarje SC, Banerjee SK (2023) Non-traditional approaches for control of antibiotic resistance. Expert Opin Biol Ther 23:1113–1135. https://doi.org/10.1080/14712598.2023.2279644
ur Rahman S, Ali T, Ali I et al (2018) The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int 2018:1–14
Vázquez-Laslop N, Mankin A (2018) How macrolide antibiotics work. Trends Biochem Sci 43:668–684
Vedantam G, Guay GG, Austria NE et al (1998) Characterization of mutations contributing to sulfathiazole resistance in Escherichia coli. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.42.1.88
Versluis F, van Esch JH, Eelkema R (2016) Synthetic self-assembled materials in biological environments. Adv Mater 28:4576–4592
Wachino J, Doi Y, Arakawa Y (2020) Aminoglycoside resistance: updates with a focus on acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin N Am 34:887–902
Wang T, Rong F, Tang Y et al (2021) Targeted polymer-based antibiotic delivery system: a promising option for treating bacterial infections via macromolecular approaches. Prog Polym Sci 116:101389
Wang Y (2021) Liposome as a delivery system for the treatment of biofilm-mediated infections. J Appl Microbiol 131:2626–2639
Wróbel A, Arciszewska K, Maliszewski D, Drozdowska D (2019) Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J Antibiot. https://doi.org/10.1038/s41429-019-0240-6
Wu Y, Battalapalli D, Hakeem MJ et al (2021) Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnol 19:1–26
Xie Y, Liu Y, Yang J et al (2018) Gold nanoclusters for targeting methicillin-resistant Staphylococcus aureus in vivo. Angew Chem Int Ed Engl 57:3958–3962
Xin Q, Shah H, Nawaz A et al (2019) Antibacterial carbon-based nanomaterials. Adv Mater 31:e1804838
Xi Y, Wang Y, Gao J et al (2019) Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis. ACS Nano 13:13645–13657
Yang J, Yang Y (2022) Regulatory lessons from China’s COVID-19 vaccines development and approval policies. Acta Materia Medica 1:96–105
Yang S-J, Kreiswirth B, Sakoulas G et al (2009) Enhanced expression of dltABCD is associated with the development of daptomycin nonsusceptibility in a clinical endocarditis isolate of Staphylococcus aureus. J Infect Dis 200:1916–1920
Yao J, Zou P, Cui Y et al (2023) Recent advances in strategies to combat bacterial drug resistance: antimicrobial materials and drug delivery systems. Pharmaceutics 15:1188. https://doi.org/10.3390/pharmaceutics15041188
Yasir M, Dutta D, Willcox M (2020) Activity of antimicrobial peptides and ciprofloxacin against Pseudomonas aeruginosa biofilms. Molecules 25:3843
Ye J, Chen X (2023) Current promising strategies against antibiotic-resistant bacterial infections. Antibiotics 12:67. https://doi.org/10.3390/antibiotics12010067
Yerushalmi H, Lebendiker M, Schuldiner S (1995) EmrE, an Escherichia coli 12-kDa multidrug transporter, exchanges toxic cations and H+ and is soluble in organic solvents. J Biol Chem 270:6856–6863
Yin X, Heeney DD, Srisengfa YT et al (2017) Bacteriocin biosynthesis contributes to the anti-inflammatory capacities of probiotic Lactobacillus plantarum. Benef Microbes 9:333–344
You K, Gao B, Wang M et al (2022) Versatile polymer-based strategies for antibacterial drug delivery systems and antibacterial coatings. J Mater Chem B Mater Biol Med 10:1005–1018
Yu L, Li K, Zhang J et al (2022) Antimicrobial peptides and macromolecules for combating microbial infections: from agents to interfaces. ACS Appl Bio Mater 5:366–393. https://doi.org/10.1021/acsabm.1c01132
Zaïri A, Ferrières L, Latour-Lambert P et al (2014) In vitro activities of dermaseptins K4S4 and K4K20S4 against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa planktonic growth and biofilm formation. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.02142-13
Zaiou M, Nizet V, Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol 120:810–816
Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev 32:361–385
Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84:5449–5453
Zeng D, Debabov D, Hartsell T et al (2016) Approved glycopeptide antibacterial drugs: mechanism of action and resistance. Cold Spring Harb Perspect Med 6:a026989
Zhanel G, Lawson CD, Adam H et al (2013) Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination. Drugs. https://doi.org/10.1007/s40265-013-0013-7
Zhang C, Yang M (2022) Antimicrobial peptides: from design to clinical application. Antibiotics 11:349. https://doi.org/10.3390/antibiotics11030349
Zhang X-L, Jiang A-M, Ma Z-Y et al (2015) The synthetic antimicrobial peptide pexiganan and its nanoparticles (PNPs) exhibit the anti-helicobacter pylori activity in vitro and in vivo. Molecules 20:3972–3985
Zhang Y, Zhang J, Chen W et al (2017) Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection. J Control Release 263:185–191
Zhong Q, Tian J, Liu T et al (2018) Preparation and antibacterial properties of carboxymethyl chitosan/ZnO nanocomposite microspheres with enhanced biocompatibility. Mater Lett 212:58–61
Zhou X, Liu Y, Gao Y et al (2020) Enhanced antimicrobial activity of N-Terminal derivatives of a novel brevinin-1 peptide from the skin secretion of Odorrana schmackeri. Toxins 12:484
Zhu Y, Hao W, Wang X et al (2022) Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 42:1377–1422. https://doi.org/10.1002/med.21879
Zou P, Chen W-T, Sun T et al (2020) Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis. Biomater Sci 8:4975–4996
Acknowledgements
Authors are thankful to Department of Biosciences-UIBT, Chandigarh University, Mohali-Punjab, India for extending the required facilities during the study.
Funding
The authors receive no financial support for the research, authorship and publications of this article.
Author information
Authors and Affiliations
Contributions
GS have made a substantial contribution to the design of this article, its analysis and data interpretation. 2. S along with AR drafted the article and revised it critically for important intellectual content; 3. AR finally approved the version to be published.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Communicated by Yusuf Akhter.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Singh, G., Rana, A. & Smriti Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 206, 280 (2024). https://doi.org/10.1007/s00203-024-03998-2
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00203-024-03998-2