Products
  • Wolfram|One

    The definitive Wolfram Language and notebook experience

  • Mathematica

    The original technical computing environment

  • Wolfram Notebook Assistant + LLM Kit

    All-in-one AI assistance for your Wolfram experience

  • System Modeler
  • Wolfram Player
  • Finance Platform
  • Wolfram Engine
  • Enterprise Private Cloud
  • Application Server
  • Wolfram|Alpha Notebook Edition
  • Wolfram Cloud App
  • Wolfram Player App

More mobile apps

Core Technologies of Wolfram Products

  • Wolfram Language
  • Computable Data
  • Wolfram Notebooks
  • AI & Linguistic Understanding

Deployment Options

  • Wolfram Cloud
  • wolframscript
  • Wolfram Engine Community Edition
  • Wolfram LLM API
  • WSTPServer
  • Wolfram|Alpha APIs

From the Community

  • Function Repository
  • Community Paclet Repository
  • Example Repository
  • Neural Net Repository
  • Prompt Repository
  • Wolfram Demonstrations
  • Data Repository
  • Group & Organizational Licensing
  • All Products
Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

  • Data & Computational Intelligence
  • Model-Based Design
  • Algorithm Development
  • Wolfram|Alpha for Business
  • Blockchain Technology
  • Education Technology
  • Quantum Computation

WolframConsulting.com

Wolfram Solutions

  • Data Science
  • Artificial Intelligence
  • Biosciences
  • Healthcare Intelligence
  • Sustainable Energy
  • Control Systems
  • Enterprise Wolfram|Alpha
  • Blockchain Labs

More Wolfram Solutions

Wolfram Solutions For Education

  • Research Universities
  • Colleges & Teaching Universities
  • Junior & Community Colleges
  • High Schools
  • Educational Technology
  • Computer-Based Math

More Solutions for Education

  • Contact Us
Learning & Support

Get Started

  • Wolfram Language Introduction
  • Fast Intro for Programmers
  • Fast Intro for Math Students
  • Wolfram Language Documentation

More Learning

  • Highlighted Core Areas
  • Demonstrations
  • YouTube
  • Daily Study Groups
  • Wolfram Schools and Programs
  • Books

Grow Your Skills

  • Wolfram U

    Courses in computing, science, life and more

  • Community

    Learn, solve problems and share ideas.

  • Blog

    News, views and insights from Wolfram

  • Resources for

    Software Developers

Tech Support

  • Contact Us
  • Support FAQs
  • Support FAQs
  • Contact Us
Company
  • About Wolfram
  • Career Center
  • All Sites & Resources
  • Connect & Follow
  • Contact Us

Work with Us

  • Student Ambassador Initiative
  • Wolfram for Startups
  • Student Opportunities
  • Jobs Using Wolfram Language

Educational Programs for Adults

  • Summer School
  • Winter School

Educational Programs for Youth

  • Middle School Camp
  • High School Research Program
  • Computational Adventures

Read

  • Stephen Wolfram's Writings
  • Wolfram Blog
  • Wolfram Tech | Books
  • Wolfram Media
  • Complex Systems

Educational Resources

  • Wolfram MathWorld
  • Wolfram in STEM/STEAM
  • Wolfram Challenges
  • Wolfram Problem Generator

Wolfram Initiatives

  • Wolfram Science
  • Wolfram Foundation
  • History of Mathematics Project

Events

  • Stephen Wolfram Livestreams
  • Online & In-Person Events
  • Contact Us
  • Connect & Follow
Wolfram|Alpha
  • Your Account
  • User Portal
  • Wolfram Cloud
  • Products
    • Wolfram|One
    • Mathematica
    • Wolfram Notebook Assistant + LLM Kit
    • System Modeler
    • Wolfram Player
    • Finance Platform
    • Wolfram|Alpha Notebook Edition
    • Wolfram Engine
    • Enterprise Private Cloud
    • Application Server
    • Wolfram Cloud App
    • Wolfram Player App

    More mobile apps

    • Core Technologies
      • Wolfram Language
      • Computable Data
      • Wolfram Notebooks
      • AI & Linguistic Understanding
    • Deployment Options
      • Wolfram Cloud
      • wolframscript
      • Wolfram Engine Community Edition
      • Wolfram LLM API
      • WSTPServer
      • Wolfram|Alpha APIs
    • From the Community
      • Function Repository
      • Community Paclet Repository
      • Example Repository
      • Neural Net Repository
      • Prompt Repository
      • Wolfram Demonstrations
      • Data Repository
    • Group & Organizational Licensing
    • All Products
  • Consulting & Solutions

    We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technical expertise

    WolframConsulting.com

    Wolfram Solutions

    • Data Science
    • Artificial Intelligence
    • Biosciences
    • Healthcare Intelligence
    • Sustainable Energy
    • Control Systems
    • Enterprise Wolfram|Alpha
    • Blockchain Labs

    More Wolfram Solutions

    Wolfram Solutions For Education

    • Research Universities
    • Colleges & Teaching Universities
    • Junior & Community Colleges
    • High Schools
    • Educational Technology
    • Computer-Based Math

    More Solutions for Education

    • Contact Us
  • Learning & Support

    Get Started

    • Wolfram Language Introduction
    • Fast Intro for Programmers
    • Fast Intro for Math Students
    • Wolfram Language Documentation

    Grow Your Skills

    • Wolfram U

      Courses in computing, science, life and more

    • Community

      Learn, solve problems and share ideas.

    • Blog

      News, views and insights from Wolfram

    • Resources for

      Software Developers
    • Tech Support
      • Contact Us
      • Support FAQs
    • More Learning
      • Highlighted Core Areas
      • Demonstrations
      • YouTube
      • Daily Study Groups
      • Wolfram Schools and Programs
      • Books
    • Support FAQs
    • Contact Us
  • Company
    • About Wolfram
    • Career Center
    • All Sites & Resources
    • Connect & Follow
    • Contact Us

    Work with Us

    • Student Ambassador Initiative
    • Wolfram for Startups
    • Student Opportunities
    • Jobs Using Wolfram Language

    Educational Programs for Adults

    • Summer School
    • Winter School

    Educational Programs for Youth

    • Middle School Camp
    • High School Research Program
    • Computational Adventures

    Read

    • Stephen Wolfram's Writings
    • Wolfram Blog
    • Wolfram Tech | Books
    • Wolfram Media
    • Complex Systems
    • Educational Resources
      • Wolfram MathWorld
      • Wolfram in STEM/STEAM
      • Wolfram Challenges
      • Wolfram Problem Generator
    • Wolfram Initiatives
      • Wolfram Science
      • Wolfram Foundation
      • History of Mathematics Project
    • Events
      • Stephen Wolfram Livestreams
      • Online & In-Person Events
    • Contact Us
    • Connect & Follow
  • Wolfram|Alpha
  • Wolfram Cloud
  • Your Account
  • User Portal
Wolfram Language & System Documentation Center
ParallelTable
  • See Also
    • Table
    • Parallelize
    • ParallelArray
    • ParallelTry
    • ParallelDo
    • ParallelSum
  • Related Guides
    • Data Parallelism
    • Parallel Computing
    • Raspberry Pi
    • Managing Remote and Parallel Kernels
    • See Also
      • Table
      • Parallelize
      • ParallelArray
      • ParallelTry
      • ParallelDo
      • ParallelSum
    • Related Guides
      • Data Parallelism
      • Parallel Computing
      • Raspberry Pi
      • Managing Remote and Parallel Kernels

ParallelTable[expr,{imax}]

generates in parallel a list of imax copies of expr.

ParallelTable[expr,{i,imax}]

generates in parallel a list of the values of expr when i runs from 1 to imax.

ParallelTable[expr,{i,imin,imax}]

starts with i=imin.

ParallelTable[expr,{i,imin,imax,di}]

uses steps di.

ParallelTable[expr,{i,{i1,i2,…}}]

uses the successive values i1, i2, ….

ParallelTable[expr,{i,imin,imax},{j,jmin,jmax},…]

gives a nested list. The list associated with i is outermost.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Generalizations & Extensions  
Options  
Method  
DistributedContexts  
ProgressReporting  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Related Guides
History
Cite this Page
BUILT-IN SYMBOL
  • See Also
    • Table
    • Parallelize
    • ParallelArray
    • ParallelTry
    • ParallelDo
    • ParallelSum
  • Related Guides
    • Data Parallelism
    • Parallel Computing
    • Raspberry Pi
    • Managing Remote and Parallel Kernels
    • See Also
      • Table
      • Parallelize
      • ParallelArray
      • ParallelTry
      • ParallelDo
      • ParallelSum
    • Related Guides
      • Data Parallelism
      • Parallel Computing
      • Raspberry Pi
      • Managing Remote and Parallel Kernels

ParallelTable

ParallelTable[expr,{imax}]

generates in parallel a list of imax copies of expr.

ParallelTable[expr,{i,imax}]

generates in parallel a list of the values of expr when i runs from 1 to imax.

ParallelTable[expr,{i,imin,imax}]

starts with i=imin.

ParallelTable[expr,{i,imin,imax,di}]

uses steps di.

ParallelTable[expr,{i,{i1,i2,…}}]

uses the successive values i1, i2, ….

ParallelTable[expr,{i,imin,imax},{j,jmin,jmax},…]

gives a nested list. The list associated with i is outermost.

Details and Options

  • ParallelTable is a parallel version of Table that automatically distributes different evaluations of expr among different kernels and processors.
  • ParallelTable will give the same results as Table, except for side effects during the computation.
  • Parallelize[Table[expr,iter, …]] is equivalent to ParallelTable[expr,iter,…].
  • If an instance of ParallelTable cannot be parallelized, it is evaluated using Table.
  • The following options can be given:
  • Method Automaticgranularity of parallelization
    DistributedContexts $DistributedContextscontexts used to distribute symbols to parallel computations
    ProgressReporting $ProgressReportingwhether to report the progress of the computation
  • The Method option specifies the parallelization method to use. Possible settings include:
  • "CoarsestGrained"break the computation into as many pieces as there are available kernels
    "FinestGrained"break the computation into the smallest possible subunits
    "EvaluationsPerKernel"->ebreak the computation into at most e pieces per kernel
    "ItemsPerEvaluation"->mbreak the computation into evaluations of at most m subunits each
    Automaticcompromise between overhead and load balancing
  • Method->"CoarsestGrained" is suitable for computations involving many subunits, all of which take the same amount of time. It minimizes overhead, but does not provide any load balancing.
  • Method->"FinestGrained" is suitable for computations involving few subunits whose evaluations take different amounts of time. It leads to higher overhead, but maximizes load balancing.
  • By default, a nested table with a large outermost level is parallelized at the outermost level, otherwise, at the innermost level. With Method->"CoarsestGrained", it is parallelized at the outermost level. With Method->"FinestGrained", it is parallelized at the innermost level.
  • The DistributedContexts option specifies which symbols appearing in expr have their definitions automatically distributed to all available kernels before the computation.
  • The default value is DistributedContexts:>$DistributedContexts with $DistributedContexts:=$Context, which distributes definitions of all symbols in the current context but does not distribute definitions of symbols from packages.
  • The ProgressReporting option specifies whether to report the progress of the parallel computation.
  • The default value is ProgressReporting:>$ProgressReporting.

Examples

open all close all

Basic Examples  (6)

ParallelTable works like Table, but in parallel:

A table of the first 10 squares:

A table with i running from 0 to 20 in steps of 2:

Make a 4×3 matrix:

Plot a table:

Longer computations display information about their progress and estimated time to completion:

Scope  (5)

The index in the table can run backward:

Make a triangular array:

Make a 3x2x4 array, or tensor:

Iterate over an existing list:

Make an array from existing lists:

Generalizations & Extensions  (1)

The table index can have symbolic values:

Options  (14)

Method  (7)

Break the computation into the smallest possible subunits:

Break the computation into as many pieces as there are available kernels:

Break the computation into at most 2 evaluations per kernel for the entire job:

Break the computation into evaluations of at most 5 elements each:

The default option setting balances evaluation size and number of evaluations:

Calculations with vastly differing runtimes should be parallelized as finely as possible:

A large number of simple calculations should be distributed into as few batches as possible:

By default, a small nested table is parallelized fully at the innermost level:

To parallelize only at the first level, use Method"CoarsestGrained":

DistributedContexts  (5)

By default, definitions in the current context are distributed automatically:

Do not distribute any definitions of functions:

Distribute definitions for all symbols in all contexts appearing in a parallel computation:

Distribute only definitions in the given contexts:

Restore the value of the DistributedContexts option to its default:

ProgressReporting  (2)

Do not show a temporary progress report:

Use Method"FinestGrained" for the most accurate progress report:

Applications  (5)

Solve and plot a differential equation for many initial conditions and animate the results:

Explore different parameter values for the sine-Gordon equation in two spatial dimensions:

Apply different algorithms to the same set of data:

Apply a list of different filters to the same image and display the result:

Or apply a list of effects:

Generate 10 frames from an animation and save them to individual files:

Run several batches in parallel:

Each run returns one frame which can be used for checking the correctness:

Remove the generated files:

Quickly show the evaluation of several nontrivial cellular automata:

Properties & Relations  (10)

Parallelization happens along the outermost (first) index:

Using multiple iteration specifications is equivalent to nesting Table functions:

ParallelDo evaluates the same sequence of expressions as ParallelTable:

ParallelSum effectively applies Plus to results from ParallelTable:

ParallelArray iterates over successive integers:

Map applies a function to successive elements in a list:

Table can substitute successive elements in a list into an expression:

ParallelTable iterating over a given list is equivalent to ParallelCombine:

ParallelTable can be implemented with WaitAll and ParallelSubmit:

Parallelization at the innermost level of a multidimensional table:

Functions defined interactively are automatically distributed to all kernels when needed:

Distribute definitions manually and disable automatic distribution:

For functions from a package, use ParallelNeeds rather than DistributeDefinitions:

Possible Issues  (3)

A function used that is not known on the parallel kernels may lead to sequential evaluation:

Define the function on all parallel kernels:

The function is now evaluated on the parallel kernels:

Definitions of functions in the current context are distributed automatically:

Definitions from contexts other than the default context are not distributed automatically:

Use DistributeDefinitions to distribute such definitions:

Alternatively, set the DistributedContexts option to include all contexts:

Trivial operations may take longer when parallelized:

Neat Examples  (2)

Visualize the Mandelbrot set:

Calculate and display the Feigenbaum (or bifurcation) diagram of the logistics map:

See Also

Table  Parallelize  ParallelArray  ParallelTry  ParallelDo  ParallelSum

Related Guides

    ▪
  • Data Parallelism
  • ▪
  • Parallel Computing
  • ▪
  • Raspberry Pi
  • ▪
  • Managing Remote and Parallel Kernels

History

Introduced in 2008 (7.0) | Updated in 2010 (8.0) ▪ 2021 (13.0)

Wolfram Research (2008), ParallelTable, Wolfram Language function, https://reference.wolfram.com/language/ref/ParallelTable.html (updated 2021).

Text

Wolfram Research (2008), ParallelTable, Wolfram Language function, https://reference.wolfram.com/language/ref/ParallelTable.html (updated 2021).

CMS

Wolfram Language. 2008. "ParallelTable." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/ParallelTable.html.

APA

Wolfram Language. (2008). ParallelTable. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ParallelTable.html

BibTeX

@misc{reference.wolfram_2025_paralleltable, author="Wolfram Research", title="{ParallelTable}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/ParallelTable.html}", note=[Accessed: 30-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_paralleltable, organization={Wolfram Research}, title={ParallelTable}, year={2021}, url={https://reference.wolfram.com/language/ref/ParallelTable.html}, note=[Accessed: 30-November-2025]}

Top
Introduction for Programmers
Introductory Book
Wolfram Function Repository | Wolfram Data Repository | Wolfram Data Drop | Wolfram Language Products
Top
  • Products
  • Wolfram|One
  • Mathematica
  • Notebook Assistant + LLM Kit
  • System Modeler

  • Wolfram|Alpha Notebook Edition
  • Wolfram|Alpha Pro
  • Mobile Apps

  • Wolfram Player
  • Wolfram Engine

  • Volume & Site Licensing
  • Server Deployment Options
  • Consulting
  • Wolfram Consulting
  • Repositories
  • Data Repository
  • Function Repository
  • Community Paclet Repository
  • Neural Net Repository
  • Prompt Repository

  • Wolfram Language Example Repository
  • Notebook Archive
  • Wolfram GitHub
  • Learning
  • Wolfram U
  • Wolfram Language Documentation
  • Webinars & Training
  • Educational Programs

  • Wolfram Language Introduction
  • Fast Introduction for Programmers
  • Fast Introduction for Math Students
  • Books

  • Wolfram Community
  • Wolfram Blog
  • Public Resources
  • Wolfram|Alpha
  • Wolfram Problem Generator
  • Wolfram Challenges

  • Computer-Based Math
  • Computational Thinking
  • Computational Adventures

  • Demonstrations Project
  • Wolfram Data Drop
  • MathWorld
  • Wolfram Science
  • Wolfram Media Publishing
  • Customer Resources
  • Store
  • Product Downloads
  • User Portal
  • Your Account
  • Organization Access

  • Support FAQ
  • Contact Support
  • Company
  • About Wolfram
  • Careers
  • Contact
  • Events
Wolfram Community Wolfram Blog
Legal & Privacy Policy
WolframAlpha.com | WolframCloud.com
© 2025 Wolfram
© 2025 Wolfram | Legal & Privacy Policy |
English