The Fabius function is an example of a function that is infinitely differentiable everywhere, yet nowhere analytic.
One way to define the function is in terms of an infinite number of random variables. Specifically, given a sequence of independent random variables \$\{U_n\}\$, where each \$U_n\$ is uniform on the interval \$[0,2^{-n}]\$, the Fabius function \$f\$ is defined on \$[0,1]\$ as the cumulative distribution function of their sum \$\displaystyle\sum_{i=1}^\infty U_i\$ :
Task
Given a number \$x\in[0,1]\$, compute \$f(x)\$. Your answer should be accurate to within \$2^{-16}\approx0.00001526\$ on the given test cases.
Test cases
x f(x)
0 0
0.163 0.012220888930835
0.3 0.129428260311965
0.5 0.5
0.618 0.733405658665583
0.75 0.930555555555556
1 1

