0
$\begingroup$

Suppose we have $f=x^5-1$ and $g=x^2-1$ and I have found the gcd using the Euclidean algorithm but I’m trying to find a way of expressing this in the way $$af+bg=1$$ where $f, g \in Q[x] $. I know this is actually quite easy and I could do this before, but somehow I can’t seem to find how to do it.

I have the following $x^5-1=(x^2-1)(x^3*x)+(x-1) $

$x^3+x=(x-1)(x^2+x+2)+2 $

So gcd is 1 but how can I work backwards to find how to do the question.

$\endgroup$
1
  • $\begingroup$ $x^3+x=(x-1)(x^2+x+2)+2 $ was the wrong calculation, should have been $x^2-1=(x-1)(x+1)+(0) $ $\endgroup$ Commented Sep 30, 2022 at 20:46

1 Answer 1

1
$\begingroup$

$$ \left( x^{5} - 1 \right) $$

$$ \left( x^{2} - 1 \right) $$

$$ \left( x^{5} - 1 \right) = \left( x^{2} - 1 \right) \cdot \color{magenta}{ \left( x^{3} + x \right) } + \left( x - 1 \right) $$ $$ \left( x^{2} - 1 \right) = \left( x - 1 \right) \cdot \color{magenta}{ \left( x + 1 \right) } + \left( 0 \right) $$ $$ \frac{ 0}{1} $$ $$ \frac{ 1}{0} $$ $$ \color{magenta}{ \left( x^{3} + x \right) } \Longrightarrow \Longrightarrow \frac{ \left( x^{3} + x \right) }{ \left( 1 \right) } $$ $$ \color{magenta}{ \left( x + 1 \right) } \Longrightarrow \Longrightarrow \frac{ \left( x^{4} + x^{3} + x^{2} + x + 1 \right) }{ \left( x + 1 \right) } $$ $$ \left( x^{4} + x^{3} + x^{2} + x + 1 \right) \left( 1 \right) - \left( x + 1 \right) \left( x^{3} + x \right) = \left( 1 \right) $$ $$ \mbox{to confirm GCD} = \color{blue}{ \left( x - 1 \right) } $$ $$ \left( x^{5} - 1 \right) = \left( x^{4} + x^{3} + x^{2} + x + 1 \right) \cdot \color{blue}{ \left( x - 1 \right) } + \left( 0 \right) $$ $$ \left( x^{2} - 1 \right) = \left( x + 1 \right) \cdot \color{blue}{ \left( x - 1 \right) } + \left( 0 \right) $$
$$ \left( x^{5} - 1 \right) \left( 1 \right) - \left( x^{2} - 1 \right) \left( x^{3} + x \right) = \color{blue}{ \left( x - 1 \right) }$$ $$ \mbox{GCD} = \color{blue}{ \left( x - 1 \right) } $$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.