1
$\begingroup$

I have the error function:

$$\text{erf}(x + iy) = \frac{2}{\sqrt{\pi}} \int_0^{x + iy} e^{-t^2} dt$$

I'm looking for an upper bound on $|\text{erf}(x + iy)|$ in terms of $y$. I know that for $y=0$ a trivial bound is $1$, but certainly I cannot have a constant bound since $\text{erf}$ is entire and analytic on $\mathbb{C}$.

Wolfram says that:

$$|\text{erf}(x + iy)|^2 = \text{erf}\left( x - x \sqrt{- \frac{y^2}{x^2}} \right) \text{erf}\left( x + x \sqrt{- \frac{y^2}{x^2}} \right)$$

This is the only "simplification" I could find but it's not really helpful... Does anyone know a useful bound?

$\endgroup$

1 Answer 1

2
$\begingroup$

Take $z=x+iy$ and $t=vz$. Then $$\text{erf}\left(z\right)=\frac{2z}{\sqrt{\pi}}\int_{0}^{1}e^{-z^{2}v^{2}}dv$$ so $$\left|\text{erf}\left(z\right)\right|\leq\frac{2\left|z\right|}{\sqrt{\pi}}\int_{0}^{1}\left|e^{-z^{2}v^{2}}\right|dv=\frac{2\left|z\right|}{\sqrt{\pi}}\int_{0}^{1}e^{-v^{2}\text{Re}(z^{2})}dv$$ $$=\frac{2\sqrt{x^{2}+y^{2}}}{\sqrt{\pi}}\int_{0}^{1}e^{-v^{2}\left(x^{2}-y^{2}\right)}dv.$$ At this point we can estimate the integral using the erf function with real argument, getting $$\left|\text{erf}\left(z\right)\right|\leq\frac{\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}-y^{2}}}\text{erf}\left(\sqrt{x^{2}-y^{2}}\right)$$ if $x^{2}\neq y^{2}$ and with $1$ if $x^{2}=y^{2}$ or we can use the trivial bounds $$\int_{0}^{1}e^{-v\left(x^{2}-y^{2}\right)}dv \leq \begin{cases} 1, & x^{2}\geq y^{2}\\ e^{y^{2}-x^{2}}, & x^{2}<y^{2}. \end{cases}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.