I've been trying to calculate an integral using NIntegrate as follows.
Q2 = 189^2;
f[x1_, x2_, Mph_] := -((1.2539284785732083*^-8*Mph^4*x1*x2)/
((x1 - 1.)^2*(x2 - 1.)^2)) +
(1.2539284785732083*^-8*Mph^4*x2)/((x1 - 1.)^2*(x2 - 1.)^2) +
(1.2539284785732083*^-8*Mph^4*x1)/((x1 - 1.)^2*(x2 - 1.)^2) -
(1.2539284785732083*^-8*Mph^4)/((x1 - 1.)^2*(x2 - 1.)^2) -
(0.0004479157918311357*Mph^2*x1^2*x2)/
((x1 - 1.)^2*(x2 - 1.)^2) + (0.0006718736877467036*Mph^2*x1^2)/
((x1 - 1.)^2*(x2 - 1.)^2) -
(0.0004479157918311357*Mph^2*x1*x2^2)/
((x1 - 1.)^2*(x2 - 1.)^2) + (0.0006718736877467036*Mph^2*x2^2)/
((x1 - 1.)^2*(x2 - 1.)^2) +
(0.0008958315836622714*Mph^2*x1*x2)/((x1 - 1.)^2*(x2 - 1.)^2) -
(0.0008958315836622714*Mph^2*x2)/((x1 - 1.)^2*(x2 - 1.)^2) -
(0.0008958315836622714*Mph^2*x1)/((x1 - 1.)^2*(x2 - 1.)^2) +
(0.0004479157918311357*Mph^2)/((x1 - 1.)^2*(x2 - 1.)^2) -
(8.*x1^3*x2)/((x1 - 1.)^2*(x2 - 1.)^2) +
(8.*x1^3)/((x1 - 1.)^2*(x2 - 1.)^2) +
(8.*x1^2*x2)/((x1 - 1.)^2*(x2 - 1.)^2) -
(8.*x1^2)/((x1 - 1.)^2*(x2 - 1.)^2) -
(8.*x1*x2^3)/((x1 - 1.)^2*(x2 - 1.)^2) +
(8.*x2^3)/((x1 - 1.)^2*(x2 - 1.)^2) +
(8.*x1*x2^2)/((x1 - 1.)^2*(x2 - 1.)^2) -
(8.*x2^2)/((x1 - 1.)^2*(x2 - 1.)^2);
f1[m_] :=
NIntegrate[
f[x1, x2, m], {x1, 0, 1 - m^2/Q2}, {x2, 1 - x1 - m^2/Q2,
1 - 1/(1 - x1)*m^2/Q2}]
Plot[f1[10^x], {x, -5, 2}]
However, Mathematica keeps giving me errors like this:
NIntegrate::slwcon: Numerical integration converging too slowly; suspect one of the following: singularity, value of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small.
NIntegrate::ncvb: NIntegrate failed to converge to prescribed accuracy after 18 recursive bisections in x2 near {x1,x2} = {0.429446,3.22008*10^-6}. NIntegrate obtained -5750.51 and 297.825 for the integral and error estimates.
Also, the plot looks fluctuating in the region of x below -2.

I tried to increase WorkingPrecison but to no avail. Could anyone tell me how to fix this?
