I have a question on the large sieve inequality involving $GL(2)$ harmonics. Recall that one has the analog for $GL(1)$ harmonics that, for any complex numbers $\alpha_m,\beta_n$, one has $$\sum_{q\le Q} \hskip 0.5em \sideset{_{}^{}}{^{\ast}_{}}\sum\limits_{a \bmod q}\, \, \left|\sum_{n\le N}\sum_{\substack{m\le M\\(mn,q) =1}} \alpha_m \beta_n e\left(\frac{a m\overline{n}}{q}\,\,\right )\right|^2\le (Q^2+MN) \|\alpha\|^2\, \|\beta\|^2$$ (see, for example, Exercise 5 on Page 185 of Iwaniec-Kowalski's book, Analytic Number Theory).
My question is whether we have: $$\sum_{q\le Q} \hskip 0.5em \sideset{_{}^{}}{^{\ast}_{}}\sum\limits_{a \bmod q}\, \, \left|\sum_{n\le N}\sum_{\substack{m\le M\\(mn,q) =1}} \alpha_m \beta_n \frac{S(am\overline{n}\,\,,1;q) }{\sqrt{q} }\,\,\right|^2\le (Q^2+MN) \|\alpha\|^2\, \|\beta\|^2\,\,\,?,$$ where $S(m,n;c)$ denotes the classical Kloosterman sum.
If any expert here knows something on this question, please show some guides or relevant references.
Many thanks in advance.