I know nothing about CAS systems, nor am I sure I performed the the examples correctly, but one possibility is to transfer the LaTeX calculations to a language more appropriate for mathematical computation, such as R or Python, and let LaTeX handle the formatting through Quarto markdown. I haven't tested it in this case, but it should faster, and IMHO easier to read and edit if you are used to these languages.
If you want to see what LaTeX code is produced to render the images showed, just change format: pdf to format: latex in the header or add keep-tex: true.
You can also explore how to insert the calculations directly into a pure LaTeX code using knitr or Sagetex, but indeed is easier with Quarto.
---
format: pdf
execute:
echo: false
documentclass: standalone
classoption: [margin=5pt, varwidth]
pdf-engine: lualatex
---
With **R** and Lua\LaTeX: \bigskip
```{r, cuentas, eval=FALSE}
start <- min(k)
end <- max(k)
sumint <- sum(k)
```
```{r}
k <- 1:100
```
```{r, cuentas, eval=TRUE}
```
Test 1: \boxed{\sum_{k=`{r} start`}^{`{r} end`} k = `{r} sumint`}\par\bigskip
```{r}
k <- 0:5
```
```{r, cuentas, eval=TRUE}
```
Test 2: \boxed{\sum_{k=`{r} start`}^{`{r} end`} \binom{`{r} end`}{k} = `{r} sum(choose(max(k),k))` = 2^{`{r} end`} = `{r} 2^end`}\par\bigskip
```{r}
k <- 7:13
```
```{r, cuentas, eval=TRUE}
```
Test 3: \boxed{\sum_{k=`{r} start`}^{`{r} end`} \binom{`{r} end`}{k} = `{r} sum(choose(max(k),k))` = 2^{`{r} end-1`} = `{r} 2^(end-1)`}\par\bigskip

---
format: pdf
execute:
echo: false
# jupyter: python3 # by defaul if python first
documentclass: standalone
classoption: [margin=5pt, varwidth]
pdf-engine: lualatex
---
With Python and Lua\LaTeX: \bigskip
```{python}
import math
```
```{python}
start = 1
end = 100
sum_int = sum(range(start, end + 1))
```
Test 1: \boxed{\sum_{k=`{python} start` }^{`{python} end`} k = `{python} sum_int`}\par\bigskip
```{python}
start = 0
end = 5
sum_binomial = sum(math.comb(end, k) for k in range(end+1))
potencia = 2**end
```
Test 2: \boxed{\sum_{k=`{python} start`}^{`{python} end`} \binom{`{python} end`}{k} = `{python} sum_binomial` = 2^{`{python} end`} = `{python} potencia`}\par\bigskip
```{python}
start = 7
end = 13
sum_binomial = sum(math.comb(end, k) for k in range(start, end))
potencia = 2**(end-1)
```
Test 3: \boxed{\sum_{k=`{python} start`}^{`{python} end`} \binom{`{python} end`}{k} = `{python} sum_binomial` = 2^{`{python} end-1`} = `{python} potencia`}\par\bigskip
```{python}
start = 1
end = 10
sum_real = sum(1 / k for k in range(start, end + 1))
```
Test 4: \boxed{\sum_{k=`{python} start`}^{`{python} end`} \frac{1}{k} \approx `{python} round(sum_real, 4)`}

expl3loop withl3fp.