Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constraints on axion dark matter by distributed intercity quantum sensors

Abstract

Ultralight axion particles are candidates for dark matter1, conjectured to form stable, macroscopic field configurations in three-dimensional space, resulting in the possible formation of topological defect dark matter2,3,4 (TDM). Exploring their possible existence through a realistic parameter space requires considering interactions that extend beyond the constraints imposed by astrophysical observations of stellar cooling processes5. Here we report the outcome of an experiment that monitors possible transient rotations of polarized spins, which could be induced by the interaction with topological defects, carried out by correlating five noble-gas laboratory set-ups located in two cities. Amplification and optimal noise filtering in hyperpolarized noble-gas spins greatly enhance the sensitivity to TDM-induced spin rotations, reaching approximately 10−6 rad. Through this, we set constraints on the axion–nucleon coupling across an axion mass range from 10 peV to 0.2 μeV, achieving 4.1 × 1010 GeV at 84 peV. These values exceed known constraints imposed by astrophysical observations, although these are obtained under different model assumptions. Our approach could further stimulate broad beyond-Standard Model physics searches, such as transient axion waves, axion stars, axion strings and Q-balls.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nuclear-spin distributed network.
Fig. 2: Sensitivity of nuclear-spin sensors.
Fig. 3: Illustration of search data.
Fig. 4: Constraints on axion TDM parameter space.

Similar content being viewed by others

Data availability

Source data for the main figures are provided with this paper. Further data and code generated during the study are available from the corresponding authors on request.

References

  1. Bertone, G. & Hooper, D. History of dark matter. Rev. Mod. Phys. 90, 045002 (2018).

    Article  CAS  ADS  Google Scholar 

  2. Pospelov, M. et al. Detecting domain walls of axionlike models using terrestrial experiments. Phys. Rev. Lett. 110, 021803 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Afach, S. et al. Search for topological defect dark matter with a global network of optical magnetometers. Nat. Phys. 17, 1396–1401 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).

    Article  CAS  Google Scholar 

  5. Buschmann, M., Dessert, C., Foster, J. W., Long, A. J. & Safdi, B. R. Upper limit on the QCD axion mass from isolated neutron star cooling. Phys. Rev. Lett. 128, 091102 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Gorenstein, P. & Tucker, W. Astronomical signatures of dark matter. Adv. High Energy Phys. 2014, 878203 (2014).

    Article  Google Scholar 

  7. DeMille, D., Doyle, J. M. & Sushkov, A. O. Probing the frontiers of particle physics with tabletop-scale experiments. Science 357, 990–994 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Safronova, M. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  9. Liu, J., Chen, X. & Ji, X. Current status of direct dark matter detection experiments. Nat. Phys. 13, 212–216 (2017).

    Article  CAS  Google Scholar 

  10. Ferreira, E. G. Ultra-light dark matter. Astron. Astrophys. Rev. 29, 7 (2021).

    Article  ADS  Google Scholar 

  11. Arcadi, G. et al. The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 78, 203 (2018).

    Article  PubMed  ADS  Google Scholar 

  12. O’Hare, C. A. New definition of the neutrino floor for direct dark matter searches. Phys. Rev. Lett. 127, 251802 (2021).

    Article  PubMed  ADS  Google Scholar 

  13. Chadha-Day, F., Ellis, J. & Marsh, D. J. Axion dark matter: what is it and why now? Sci. Adv. 8, eabj3618 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279 (1978).

    Article  CAS  ADS  Google Scholar 

  15. Weinberg, S. A new light boson? Phys. Rev. Lett. 40, 223 (1978).

    Article  CAS  ADS  Google Scholar 

  16. Kim, J. E. & Carosi, G. Axions and the strong CP problem. Rev. Mod. Phys. 82, 557 (2010).

    Article  CAS  ADS  Google Scholar 

  17. Irastorza, I. G. & Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 102, 89–159 (2018).

    Article  CAS  ADS  Google Scholar 

  18. Svrcek, P. & Witten, E. Axions in string theory. J. High Energy Phys. 2006, 051 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  19. Kawasaki, M., Saikawa, K. & Sekiguchi, T. Axion dark matter from topological defects. Phys. Rev. D 91, 065014 (2015).

    Article  ADS  Google Scholar 

  20. Raffelt, G. G. Astrophysical axion bounds. Lect. Notes Phys. 741, 51–71 (2008).

    Article  CAS  ADS  Google Scholar 

  21. Jiang, M., Su, H., Garcon, A., Peng, X. & Budker, D. Search for axion-like dark matter with spin-based amplifiers. Nat. Phys. 17, 1402–1407 (2021).

    Article  CAS  Google Scholar 

  22. Wang, Y. et al. Limits on axions and axionlike particles within the axion window using a spin-based amplifier. Phys. Rev. Lett. 129, 051801 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Budker, D., Graham, P. W., Ledbetter, M., Rajendran, S. & Sushkov, A. O. Proposal for a cosmic axion spin precession experiment (CASPEr). Phys. Rev. X 4, 021030 (2014).

    CAS  Google Scholar 

  24. Garcon, A. et al. Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance. Sci. Adv. 5, eaax4539 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Bhusal, A., Houston, N. & Li, T. Searching for solar axions using data from the Sudbury Neutrino Observatory. Phys. Rev. Lett. 126, 091601 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Carenza, P. et al. Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung. J. Cosmol. Astropart. Phys. 2019, 016 (2019).

    Article  CAS  Google Scholar 

  27. DeRocco, W., Graham, P. W. & Rajendran, S. Exploring the robustness of stellar cooling constraints on light particles. Phys. Rev. D 102, 075015 (2020).

    Article  CAS  ADS  Google Scholar 

  28. Bar, N., Blum, K. & D’amico, G. Is there a supernova bound on axions? Phys. Rev. D 101, 123025 (2020).

    Article  CAS  ADS  Google Scholar 

  29. van den Bergh, S. How rare are supernovae? Comments Astrophys. 17, 125–130 (1993).

    ADS  Google Scholar 

  30. Afach, S. et al. What can a GNOME do? Search targets for the Global Network of Optical Magnetometers for Exotic physics searches. Ann. Phys. 536, 2300083 (2024).

    Article  Google Scholar 

  31. Yang, Y., Wu, T., Zhang, J. & Guo, H. Search for topological defect of axionlike model with cesium atomic comagnetometer. Chin. Phys. B 30, 050704 (2021).

    Article  CAS  ADS  Google Scholar 

  32. Khamis, S. S. et al. Multimessenger search for exotic field emission with a global magnetometer network. Phys. Rev. X 15, 031048 (2025).

    CAS  Google Scholar 

  33. Gavilan-Martin, D. et al. Searching for dark matter with a spin-based interferometer. Nat. Commun. 16, 4953 (2025).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Wang, Y. et al. Search for exotic parity-violation interactions with quantum spin amplifiers. Sci. Adv. 9, eade0353 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roberts, B. M. et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat. Commun. 8, 1195 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  36. Walker, T. G. & Happer, W. Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 69, 629 (1997).

    Article  CAS  ADS  Google Scholar 

  37. Owen, B. J. & Sathyaprakash, B. S. Matched filtering of gravitational waves from inspiraling compact binaries: computational cost and template placement. Phys. Rev. D 60, 022002 (1999).

    Article  ADS  Google Scholar 

  38. Wainstein, L. A. & Zubakov, V. Extraction of Signals from Noise (Dover, 1970).

  39. Aybas, D. et al. Search for axionlike dark matter using solid-state nuclear magnetic resonance. Phys. Rev. Lett. 126, 141802 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Brubaker, B., Zhong, L., Lamoreaux, S., Lehnert, K. & van Bibber, K. HAYSTAC axion search analysis procedure. Phys. Rev. D 96, 123008 (2017).

    Article  ADS  Google Scholar 

  41. Kimball, D. J. Nuclear spin content and constraints on exotic spin-dependent couplings. New J. Phys. 17, 073008 (2015).

    Article  ADS  Google Scholar 

  42. Catena, R. & Ullio, P. A novel determination of the local dark matter density. J. Cosmol. Astropart. Phys. 2010, 004 (2010).

    Article  Google Scholar 

  43. Bovy, J. & Tremaine, S. On the local dark matter density. Astrophys. J. 756, 89 (2012).

    Article  ADS  Google Scholar 

  44. Sivertsson, S., Silverwood, H., Read, J. I., Bertone, G. & Steger, P. The local dark matter density from SDSS-SEGUE G-dwarfs. Mon. Not. R. Astron. Soc. 478, 1677–1693 (2018).

    Article  CAS  ADS  Google Scholar 

  45. Huang, X. et al. Hunting for exotic bosons with flying quantum sensors in space. Phys. Rev. D 112, 095015 (2025).

  46. Kornack, T., Ghosh, R. & Romalis, M. Nuclear spin gyroscope based on an atomic comagnetometer. Phys. Rev. Lett. 95, 230801 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Shaham, R., Katz, O. & Firstenberg, O. Strong coupling of alkali-metal spins to noble-gas spins with an hour-long coherence time. Nat. Phys. 18, 506–510 (2022).

    Article  CAS  Google Scholar 

  48. Braaten, E. & Zhang, H. Colloquium: The physics of axion stars. Rev. Mod. Phys. 91, 041002 (2019).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  49. Buschmann, M. et al. Dark matter from axion strings with adaptive mesh refinement. Nat. Commun. 13, 1049 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  50. Kimball, D. J. et al. Searching for axion stars and Q-balls with a terrestrial magnetometer network. Phys. Rev. D 97, 043002 (2018).

    Article  ADS  Google Scholar 

  51. Kusenko, A. & Steinhardt, P. J. Q-ball candidates for self-interacting dark matter. Phys. Rev. Lett. 87, 141301 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Centers, G. P. et al. Stochastic fluctuations of bosonic dark matter. Nat. Commun. 12, 7321 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Banerjee, A., Budker, D., Eby, J., Kim, H. & Perez, G. Relaxion stars and their detection via atomic physics. Commun. Phys. 3, 1 (2020).

    Article  Google Scholar 

  54. Wu, T. et al. Search for axionlike dark matter with a liquid-state nuclear spin comagnetometer. Phys. Rev. Lett. 122, 191302 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Abel, C. et al. Search for axionlike dark matter through nuclear spin precession in electric and magnetic fields. Phys. Rev. X 7, 041034 (2017).

    Google Scholar 

  56. Dailey, C. et al. Quantum sensor networks as exotic field telescopes for multi-messenger astronomy. Nat. Astron. 5, 150–158 (2021).

    Article  ADS  Google Scholar 

  57. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Koss, M. J. et al. UGC 4211: a confirmed dual active galactic nucleus in the local universe at 230 pc nuclear separation. Astrophys. J. Lett. 942, L24 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Budker for valuable discussions, as well as J. Chen and C. Sun for their suggestions on the figures. This work was supported by the National Natural Science Foundation of China (grant nos. T2388102, 92476204, 11927811, 12150014, 12274395, 123B2063 and 12261160569), Chinese Academy of Sciences (grant no. XDB1300000), Innovation Program for Quantum Science and Technology (grant no. 2021ZD0303205), Youth Innovation Promotion Association (grant no. 2023474), Chinese Academy of Sciences Magnetic Resonance Technology Alliance Research Instrument and Equipment Development/Functional Development (grant no. 2022GZL003), Frontier Scientific Research Program of Deep Space Exploration Laboratory (grant no. 2022-QYKYJH-HXYF-013) and the Fundamental Research Funds for the Central Universities (grant no. WK2030250128).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. designed the experimental protocols, performed experiments, analysed the data and wrote the manuscript. Y.H., X.K., D.C., J.X.X. and W.Z. performed experiments and edited the manuscript. Y.C. and S.P. edited the manuscript. M.J., X.P. and J.D. proposed the experimental concept, designed experimental protocols and proofread and edited the manuscript. All authors contributed with discussions and checking the manuscript.

Corresponding authors

Correspondence to Min Jiang or Xinhua Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Yue Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The Supplementary Information contains 22 Supplementary Figs., two Supplementary Tables and the following sections: Theory of axion topological defect dark matter and expected signal; Nuclear spin sensor; Intercity noble-gas spin-sensor network; Comparison between our work and existing approaches; Data analysis; Extraction of the constraint; Advancements and future perspectives in network-based dark matter detection.

Transparent Peer Review file

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, Y., Kang, X. et al. Constraints on axion dark matter by distributed intercity quantum sensors. Nature (2026). https://doi.org/10.1038/s41586-025-10034-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41586-025-10034-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing