이름공간
변수
행위

std::mutex

cppreference.com
< cpp‎ | thread
 
 
Thread support library
Threads
(C++11)
this_thread namespace
(C++11)
(C++11)
(C++11)
Mutual exclusion
mutex
(C++11)
Generic lock management
(C++11)
(C++11)
(C++11)
(C++11)(C++11)(C++11)
Condition variables
(C++11)
Futures
(C++11)
(C++11)
(C++11)
(C++11)
 
std::mutex
 
<mutex> 에 정의되어 있음.
class mutex;
(since C++11)

The mutex class is a synchronization primitive that can be used to protect shared data from being simultaneously accessed by multiple threads.

mutex offers exclusive, non-recursive ownership semantics:

  • A calling thread owns a mutex from the time that it successfully calls either lock or try_lock until it calls unlock.
  • When a thread owns a mutex, all other threads will block (for calls to lock) or receive a false return value (for try_lock) if they attempt to claim ownership of the mutex.
  • A calling thread must not own the mutex prior to calling lock or try_lock.

The behavior of a program is undefined if a mutex is destroyed while still owned by any threads, or a thread terminates while owning a mutex. The mutex class satisfies all requirements of Mutex and StandardLayoutType.

std::mutex is neither copyable nor movable.

목차

[편집] Member types

Member type Definition
native_handle_type(not always present) implementation-defined[edit]

[편집] Member functions

constructs the mutex
(public member function) [edit]
destroys the mutex
(public member function) [edit]
operator=
[deleted]
not copy-assignable
(public member function) [edit]
Locking
locks the mutex, blocks if the mutex is not available
(public member function) [edit]
tries to lock the mutex, returns if the mutex is not available
(public member function) [edit]
unlocks the mutex
(public member function) [edit]
Native handle
returns the underlying implementation-defined thread handle
(public member function) [edit]

[편집] Notes

std::mutex is usually not accessed directly: std::unique_lock, std::lock_guard, or std::scoped_lock (since C++17) manage locking in a more exception-safe manner.

[편집] Example

This example shows how a mutex can be used to protect an std::map shared between two threads.

#include <iostream>
#include <map>
#include <string>
#include <chrono>
#include <thread>
#include <mutex>
 
std::map<std::string, std::string> g_pages;
std::mutex g_pages_mutex;
 
void save_page(const std::string &url)
{
    // simulate a long page fetch
    std::this_thread::sleep_for(std::chrono::seconds(2));
    std::string result = "fake content";
 
    std::lock_guard<std::mutex> guard(g_pages_mutex);
    g_pages[url] = result;
}
 
int main() 
{
    std::thread t1(save_page, "http://foo");
    std::thread t2(save_page, "http://bar");
    t1.join();
    t2.join();
 
    // safe to access g_pages without lock now, as the threads are joined
    for (const auto &pair : g_pages) {
        std::cout << pair.first << " => " << pair.second << '\n';
    }
}

Output:

http://bar => fake content
http://foo => fake content

[편집] See also

provides mutual exclusion facility which can be locked recursively by the same thread
(class) [edit]
implements a strictly scope-based mutex ownership wrapper
(class template) [edit]
implements movable mutex ownership wrapper
(class template) [edit]
deadlock-avoiding RAII wrapper for multiple mutexes
(class template) [edit]
provides a condition variable associated with a std::unique_lock
(class) [edit]