Let $f: A \to B$ be a function, and $Y \subseteq B$. Prove or disprove: $f^{-1}(f(f^{-1}(Y))) = f^{-1}(Y)$.
My textbook has a theorem that says:
Suppose $f: A \to B$. Let $X \subseteq A$ and $Y \subseteq B$. Then:
I. $X \subseteq f^{-1}(f(X))$
II. $f(f^{-1}(Y)) \subseteq Y$
Can I combine facts (I) and (II) and apply the definition of the preimage to prove the above proposition?