0
$\begingroup$

I am trying to create a function that takes in an input $\mu$ and place that input into the replace rule for a numerical integration, as seen in the code below:

Clear["Global`*"]
x = r/R;
Subscript[U, T] = \[CapitalOmega] R (x + \[Mu] Sin[\[Psi]]);
Subscript[U, R] = \[CapitalOmega] R \[Mu] Cos[\[Psi]];
U = Sqrt[Subscript[U, T]^2 + Subscript[U, R]^2];
NIntegrate[
   NIntegrate[
    1/2 \[Rho] U^3 Subscript[C, Subscript[d, 0]] /. #, {r, 0, 
      R} /. #], {\[Psi], 0, 2 Pi} /. #] & @{R -> 1, \[CapitalOmega] ->
    1, Subscript[C, Subscript[d, 0]] -> 1, \[Rho] -> 1, \[Mu] -> 1}
Subscript[P, 0][\[Mu]_] = 
 NIntegrate[
    NIntegrate[
     1/2 \[Rho] U^3 Subscript[C, Subscript[d, 0]] /. #, {r, 0, 
       R} /. #], {\[Psi], 0, 2 Pi} /. #] & @{R -> 
    1, \[CapitalOmega] -> 1, 
   Subscript[C, Subscript[d, 0]] -> 1, \[Rho] -> 1, \[Mu] -> \[Mu]}
Subscript[P, 0][1]

Running this code has the following result:

As you can see, simply subbing in for $\mu$ using $\mu \rightarrow 1$ works fine, but it does not work when attempted as a function. How would I set up this function to correctly send the input to the replace rule?

$\endgroup$

1 Answer 1

1
$\begingroup$
Clear["Global`*"]
x = r/R;
Subscript[U, T] = Ω R (x + μ Sin[ψ]);
Subscript[U, R] = Ω R μ Cos[ψ];
U = Sqrt[Subscript[U, T]^2 + Subscript[U, R]^2];

Subscript[P, 0][mu_] := 
 NIntegrate @@
  ({1/2 ρ U^3 Subscript[C, 
       Subscript[d, 0]], {ψ, 0, 2 Pi}, {r, 0, R}} /.
    {R -> 1, Ω -> 1, 
     Subscript[C, Subscript[d, 0]] -> 1, ρ -> 1, μ -> mu})

Subscript[P, 0][1]

(* 5.58815 *)
$\endgroup$

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.