PNG is an extremely slow format, so if you can use almost anything else, you'll see a big speedup.
For example, here's an opencv version of your program that gets the filenames from command-line args:
#!/usr/bin/python3
import sys
import cv2
import numpy as np
video_array = []
for filename in sys.argv[1:]:
im = cv2.imread(filename)
video_array.append(np.asarray(im))
video_array = np.array(video_array)
print(video_array.shape)
I can run it like this:
$ mkdir sample
$ for i in {1..100}; do cp ~/pics/k2.png sample/$i.png; done
$ time ./readframes.py sample/*.png
(100, 2048, 1450, 3)
real 0m6.063s
user 0m5.758s
sys 0m0.839s
So 6s to read 100 PNG images. If I try with TIFF instead:
$ for i in {1..100}; do cp ~/pics/k2.tif sample/$i.tif; done
$ time ./readframes.py sample/*.tif
(100, 2048, 1450, 3)
real 0m1.532s
user 0m1.060s
sys 0m0.843s
1.5s, so four times faster.
You might get a small speedup with pyvips:
#!/usr/bin/python3
import sys
import pyvips
import numpy as np
# map vips formats to np dtypes
format_to_dtype = {
'uchar': np.uint8,
'char': np.int8,
'ushort': np.uint16,
'short': np.int16,
'uint': np.uint32,
'int': np.int32,
'float': np.float32,
'double': np.float64,
'complex': np.complex64,
'dpcomplex': np.complex128,
}
# vips image to numpy array
def vips2numpy(vi):
return np.ndarray(buffer=vi.write_to_memory(),
dtype=format_to_dtype[vi.format],
shape=[vi.height, vi.width, vi.bands])
video_array = []
for filename in sys.argv[1:]:
vi = pyvips.Image.new_from_file(filename, access='sequential')
video_array.append(vips2numpy(vi))
video_array = np.array(video_array)
print(video_array.shape)
I see:
$ time ./readframes.py sample/*.tif
(100, 2048, 1450, 3)
real 0m1.360s
user 0m1.629s
sys 0m2.153s
Another 10% or so.
Finally, as other posters have said, you could load frames in parallel. That wouldn't help TIFF much, but it would certainly boost PNG.
scipy.misc.imread
instead of usingPIL
. Otherwise, I don't see any obvious ways to speed up your code.imread
is about 15% faster than PIL.scipy.misc.imread
andcv2.imread
(like, do they share an implementation)? This older thread suggests thatcv2.imread
is the fastest image reading function available.