I am running LSTM in pytorch but as I understand, it is only taking sequence length = 1. When I reshape to have sequence length to 4 or other number, then I get an error of mismatching length in input and target. If I reshape both input and target, then the model complains that it does not accept multi-target labels.
My train dataset has 66512 rows and 16839 columns, 3 categories/classes in the target. I would like to use a batch size 200 and a sequence length of 4, i.e. use 4 rows of data in a sequence.
Please advise how to adjust my model and/or data to be able to run model for various sequence lengths (e.g., 4).
batch_size=200
import torch
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
train_target = torch.tensor(train_data[['Label1','Label2','Label3']].values.astype(np.float32))
train_target = np.argmax(train_target, axis=1)
train = torch.tensor(train_data.drop(['Label1','Label2','Label3'], axis = 1).values.astype(np.float32))
train_tensor = TensorDataset(train.unsqueeze(1), train_target)
train_loader = DataLoader(dataset = train_tensor, batch_size = batch_size, shuffle = True)
print(train.shape)
print(train_target.shape)
torch.Size([66512, 16839])
torch.Size([66512])
import torch.nn as nn
class LSTMModel(nn.Module):
def __init__(self, input_dim, hidden_dim, layer_dim, output_dim):
super(LSTMModel, self).__init__()
# Hidden dimensions
self.hidden_dim = hidden_dim
# Number of hidden layers
self.layer_dim = layer_dim
# Building LSTM
self.lstm = nn.LSTM(input_dim, hidden_dim, layer_dim, batch_first=True)
# Readout layer
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
# Initialize hidden state with zeros
h0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(device)
# Initialize cell state
c0 = torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).requires_grad_().to(device)
out, (hn, cn) = self.lstm(x, (h0,c0))
# Index hidden state of last time step
out = self.fc(out[:, -1, :])
return out
input_dim = 16839
hidden_dim = 100
output_dim = 3
layer_dim = 1
batch_size = batch_size
num_epochs = 1
model = LSTMModel(input_dim, hidden_dim, layer_dim, output_dim)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = nn.CrossEntropyLoss()
learning_rate = 0.1
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
print(len(list(model.parameters())))
for i in range(len(list(model.parameters()))):
print(list(model.parameters())[i].size())
6
torch.Size([400, 16839])
torch.Size([400, 100])
torch.Size([400])
torch.Size([400])
torch.Size([3, 100])
torch.Size([3])
for epoch in range(num_epochs):
for i, (train, train_target) in enumerate(train_loader):
# Load data as a torch tensor with gradient accumulation abilities
train = train.requires_grad_().to(device)
train_target = train_target.to(device)
# Clear gradients w.r.t. parameters
optimizer.zero_grad()
# Forward pass to get output/logits
outputs = model(train)
# Calculate Loss: softmax --> cross entropy loss
loss = criterion(outputs, train_target)
# Getting gradients w.r.t. parameters
loss.backward()
# Updating parameters
optimizer.step()
print('Epoch: {}. Loss: {}. Accuracy: {}'.format(epoch, np.around(loss.item(), 4), np.around(accuracy,4)))