daily data:
ts_code close low
2021-03-10 APPL 6.67 6.66
2021-03-10 AMA 20.24 20.12
2021-03-11 APPL 6.75 6.50
2021-03-11 AMA 21.10 20.40
2021-03-12 AMA 21.31 21.03
2021-03-12 APPL 6.81 6.76
2021-03-15 AMA 21.43 20.95
2021-03-15 APPL 6.74 6.68
2021-03-16 AMA 21.49 21.10
2021-03-16 APPL 6.74 6.67
2021-03-17 APPL 6.67 6.64
2021-03-17 AMA 21.03 20.74
2021-03-18 APPL 6.56 6.51
2021-03-18 AMA 21.56 20.84
2021-03-19 APPL 6.55 6.47
2021-03-19 AMA 20.31 20.21
2021-03-22 AMA 21.38 20.37
2021-03-22 APPL 6.63 6.55
2021-03-23 APPL 6.60 6.54
2021-03-23 AMA 21.06 20.80
2021-03-24 APPL 6.62 6.55
2021-03-24 AMA 20.37 20.29
2021-03-25 AMA 20.59 20.24
2021-03-25 APPL 6.67 6.57
2021-03-26 APPL 6.69 6.64
2021-03-26 AMA 20.98 20.60
2021-03-29 AMA 21.32 21.03
2021-03-29 APPL 6.57 6.54
2021-03-30 AMA 21.76 21.04
2021-03-30 APPL 6.42 6.40
2021-03-31 APPL 6.39 6.33
2021-03-31 AMA 21.84 21.43
2021-04-01 APPL 6.51 6.32
2021-04-01 AMA 21.61 21.33
2021-04-02 AMA 21.33 21.19
2021-04-02 APPL 6.51 6.44
2021-04-06 AMA 21.51 21.34
2021-04-06 APPL 6.60 6.50
2021-04-07 AMA 21.47 21.14
2021-04-07 APPL 6.58 6.52
2021-04-08 AMA 21.39 21.16
2021-04-08 APPL 6.43 6.40
2021-04-09 AMA 21.13 20.92
2021-04-09 APPL 6.40 6.38
2021-04-12 APPL 6.34 6.32
2021-04-12 AMA 20.54 20.47
2021-04-13 APPL 6.34 6.31
2021-04-13 AMA 20.62 20.43
2021-04-14 APPL 6.36 6.28
2021-04-14 AMA 20.51 20.26
2021-04-15 AMA 20.20 19.92
2021-04-15 APPL 6.49 6.32
2021-04-16 APPL 6.69 6.40
2021-04-16 AMA 20.10 19.66
2021-04-19 AMA 20.98 19.75
2021-04-19 APPL 6.68 6.64
2021-04-20 AMA 21.52 20.76
2021-04-20 APPL 6.68 6.64
2021-04-21 APPL 6.58 6.57
2021-04-21 AMA 22.83 22.12
2021-04-22 APPL 6.57 6.56
2021-04-22 AMA 22.80 22.60
2021-04-23 AMA 23.11 22.89
2021-04-23 APPL 6.47 6.44
2021-04-26 APPL 6.36 6.36
2021-04-26 AMA 22.76 22.72
2021-04-27 AMA 22.76 22.68
2021-04-27 APPL 6.34 6.31
2021-04-28 APPL 6.31 6.28
2021-04-28 AMA 23.17 22.60
2021-04-29 AMA 23.41 22.93
2021-04-29 APPL 6.48 6.31
2021-04-30 AMA 23.11 22.83
2021-04-30 APPL 6.33 6.30
Goal: create weekly data
logic = {
'low' : 'min',
'close' : 'last'}
df_w=df_daily.groupby('ts_code').resample('W').agg({
'low': 'min',
'close': 'last'}).reset_index().dropna()
It works slow when there are many dates and stocks. I don't know which part leads slow.
Ref:
- This post introduces the definition of weekly data and how to convert based on daily data.
df_dailyis undefined andlogicis defined but never used. \$\endgroup\$