13
$\begingroup$

Consider the following recurrence relation $$x_1=1\\ x_2=a\\ x_{n+2}=ad^nx_{n+1}-dx_n$$ where $a,x_n\in\mathbb{C}$ and $d\in\mathbb{R},d>1$.

Is there any $a\in\mathbb{C}$ such that $\lim x_n=0$ ? or at least can we find a formula for $x_n$ depending only on $a$ and $d$?

$\endgroup$
7
  • 2
    $\begingroup$ For $x_n=y_nd^{n/2}$ and $z_n=\frac{y_{n+1}}{y_n}$ you get $z_{n+1}+\frac 1{z_n}=(a/\sqrt d) d^n$ and $z_n\to 0$ iff $z_n$ is bounded. $\endgroup$ Commented Jul 10, 2018 at 7:13
  • $\begingroup$ @FabioLucchini great substitution! but I cannot see the reason for: $z_n$ is bounded implies $z_n\to 0$. Can you help me to understand that, please? $\endgroup$ Commented Jul 10, 2018 at 13:49
  • 1
    $\begingroup$ I got it! If $z_n$ is bounded, then the sequence $\frac{1}{z_n}$ is divergent. Therefore $z_n\to 0$. $\endgroup$ Commented Jul 10, 2018 at 13:55
  • $\begingroup$ the bad thing is that even if $y_n\to0$ it may happen that $x_n$ is not convergent to $0$. However, your comment gives me ideas I did not have before. $\endgroup$ Commented Jul 10, 2018 at 14:32
  • $\begingroup$ Yes, but can be showed, similarly, that $x_n\to 0$ iff $x_n$ is bounded by a power of $d^n$. $\endgroup$ Commented Jul 10, 2018 at 14:34

3 Answers 3

5
+25
$\begingroup$

Let $x_n$ be a complex sequence satisfying $x_0=0$, $x_1=1$ and $$x_{n+2}=ad^nx_{n+1}-dx_n$$ for all $n\in\Bbb N$ with $d>1$ and $a\in\Bbb C\setminus\{0\}$. Then \begin{align} &x_n=O(a^nd^{n^2/2-n/2})& &(n\to\infty)\tag 1 \end{align} Moreover, we have $x_n=o(a^nd^{n^2/2-n/2})$ if and only if $x_n\xrightarrow{n\to\infty}0$.

Proof. First note that the sequence $u_n=a^nd^{n^2/2-n/2-1}$ satisfy $u_{n+2}=ad^nu_{n+1}$, hence if we put $w_n=x_n/u_n$, the we have $$w_{n+2}=w_{n+1}-d\frac{u_n}{u_{n+2}}w_n$$ Since $d\frac{u_n}{u_{n+2}}=\frac{d^2}{a^2d^{2n}}$ we get $$w_{n+2}=w_1-\frac{d^2}{a^2}\sum_{k=0}^n\frac{w_k}{d^{2k}}\tag 3$$

We claim that this sequence converges. For all $n\in\Bbb N$, we have \begin{align} &|w_n|\leq c^n& &\text{where } c=1+\frac{d^4}{|a|^2(d^2-1)}>1 \end{align} This follows by induction on $n$, for \begin{align} |w_{n+2}| &\leq|w_1|+\frac{d^2}{|a|^2}\sum_{k=0}^n\frac{|w_k|}{d^{2k}}\\ &\leq c+\frac{d^2}{|a|^2}c^n\sum_{k=0}^nd^{-2k}\\ &\leq c^{n+1}+\frac{d^2}{|a|^2}c^{n+1}\frac 1{1-d^{-2}}\\ &\leq c^{n+2} \end{align} Consequently, $\sqrt[n]{|w_n|}$ is bounded and let $\ell=\limsup\sqrt[n]{|w_n|}$. If $\ell<d^2$ then the power series in $(3)$ is convergent, hence $w_n$ is convergent as well. Assume $\ell\geq d^2>1$. Then for all $\varepsilon>0$, we have $|w_n|\leq(\ell+\varepsilon)^n$ eventually, hence there exists a constant $C>0$ satisfying \begin{align} \ell &=\limsup\sqrt[n]{|w_n|}\\ &\leq\limsup\sqrt[n]{|w_1|+C\sum_{k=0}^n\left(\frac{\ell+\varepsilon}{d^2}\right)^k}\\ &\leq\lim \sqrt[n]{|w_1|+C\frac{\left(\frac{\ell+\varepsilon}{d^2}\right)^{n+1}-1}{\frac{\ell+\varepsilon}{d^2}-1}}\\ &=\frac{\ell+\varepsilon}{d^2} \end{align} from which $\ell\leq\frac\ell{d^2}$ which implies $d^2\leq 1$, a contradiction which proves $w_n$ to be convergent and hence proves $(1)$.

Finally, from $(3)$, we get $w_n\xrightarrow{n\to\infty}0$ if and only if $$w_1=\frac{d^2}{a^2}\sum_{k=0}^\infty\frac{w_k}{d^{2k}}$$ from which $$w_{n+2}=\frac{d^2}{a^2}\sum_{k=n+1}^\infty\frac{w_k}{d^{2k}}$$ Let $$s_n=\sup_{k\geq n}|w_k|$$ Then $s_n\downarrow 0$ and for all $k\geq n$ we have \begin{align} |w_{k+2}| &\leq\frac{d^2}{|a|^2}\frac{s_{k+1}}{d^{2k+2}}\\ &\leq\frac{d^2}{|a|^2}\frac{s_{n+1}}{d^{2n+2}} \end{align} from which $$s_{n+2}\leq\frac{d^2}{|a|^2}\frac{s_{n+1}}{d^{2(n+1)}}$$ Consequently \begin{align} s_n &\leq s_0\prod_{k=0}^{n-1}\frac{d^2}{|a|^2 d^{2k}}\\ &\leq s_0\frac{d^{2n}}{|a|^{2n}d^{n^2-n}} \end{align} Consequently, \begin{align} |x_n| &=|u_n||w_n|\\ &\leq |u_n| s_n\\ &\leq s_0\frac{|u_n|}{|a|^{2n}d^{n^2-n}}\\ &=\frac{|a|^nd^{n^2/2-n/2-1}}{|a|^{2n}d^{n^2-3n}}\\ &\xrightarrow{n\to\infty}0 \end{align} $\square$

Assuming $x_n\neq 0$ eventually, we have $x_n\xrightarrow{n\to\infty}0$ if and only if $|x_{n+1}/x_n|$ is bounded.

Proof. The sequence $z_n=\sqrt d x_{n+1}/x_n$ satisfy $$z_{n+1}+\frac 1{z_n}=\frac a{\sqrt d}d^n$$ If $|z_n|$ is bounded, then $|\frac 1{z_n}|\geq\frac{|a|}{\sqrt d}d^n-|z_{n+1}|\to\infty$. Thus $|z_n|\to 0$. In particular, $|z_n|$ is bounded by $1/2$, hence $|x_n|$ is bounded $2^{-n}$, hence $x_n\to 0$. $\square$

We have $x_n\xrightarrow{n\to\infty}0$ if and only if $\sqrt[n]{|x_n|}$ is bounded.

Proof. Let $\sqrt[n]{|x_n|}$ be bounded and $$\ell=\limsup_{n\to\infty}\sqrt[n]{|x_n|}$$ Then for all $\varepsilon>0$, we have $|x_n|<(\ell+\varepsilon)^n$ eventually, hence \begin{align} \ell &=\limsup_{n\to\infty}\sqrt[n+1]{|x_{n+1}|}\\ &\leq\limsup_{n\to\infty}\sqrt[n+1]{\left|\frac{x_{n+2}}{ad^n}\right|+\left|\frac{dx_n}{ad^n}\right|}\\ &\leq\lim_{n\to\infty}\sqrt[n+1]{\frac{(\ell+\varepsilon)^{n+2}} {|a|d^n}+\frac{d(\ell+\varepsilon)^{n}}{|a|d^n}}\\ &=\lim_{n\to\infty}\sqrt[n+1]{\frac{(\ell+\varepsilon)^{n}}{|a|d^n}((\ell+\varepsilon)^2+d)}\\ &=\frac{\ell+\varepsilon}d \end{align} Thus $\ell\leq\frac{\ell+\varepsilon}d$ for all $\varepsilon>0$, hence $\ell\leq\ell/d$ from which $\ell(d-1)\leq 0$. Since $d>1$ and $\ell\geq 0$, this implies $\ell=0$, hence $x_n\to 0$. $\square$

A generating function.

We have $x_n\xrightarrow{n\to\infty}0$ if and only if there exists an entire function $G:\Bbb C\to\Bbb C$ satisfying the functional equation $$(1+dz^2)G(z)=1+azG(dz)$$

Proof. Let $x_0=0$ and $x_1=1$ and let $F$ be its generating function $$F(z)=\sum_{n=0}^\infty x_n z^n=zG(z)$$ Then $G$ satisfy the functional equation $$(1+dz^2)G(z)=1+azG(dz)$$ In particular, this gives $G(0)=1$ and for $z=\pm i\sqrt d$ $$G(\pm i\sqrt d)=\pm i\frac{\sqrt d}a$$

$\endgroup$
4
$\begingroup$

$$\mathbf{\color{green}{FINAL\ EDITION}}$$ $$\mathbf{\color{brown}{Case\ d=0}}$$ If $d=0,$ then \begin{align} &x_1=1,\quad x_2=a,\quad x_n=0,\quad n=3, 4,\dots. \end{align} Then $\mathbf{x_n\to 0.}$

$$\mathbf{\color{brown}{Case\ d\not=0.\ Sequence\ transformation}}$$

Easily to get \begin{align} &x_1=1,\quad x_2=a,\quad x_{1+2} = ad^1\cdot a-d\cdot1 = d(a^2-1),\\[4pt] &x_{2+2} = ad^2\cdot d(a^2-1)- d\cdot a = ad(d^2(a^2-1)-1),\\[4pt] &x_{3+2} = ad^3\cdot ad(d^2(a^2-1)-1) - d\cdot d(a^2-1) = d^2(a^2d^2(d^2(a^2-1)-1))-(a^2-1))\dots \end{align} Let $$x_n = d^{n/_2\ }y_{n},\quad n=1, 2,\dots,\tag1$$ then \begin{align} &d^{\frac{n+2}2}y_{n+2} = ad^nd^{\frac{n+1}2}y_{n+1} - d^{\frac{n}2}dy_n,\\[4pt] &y_{n+2}=gd^ny_{n+1}-y_n,\quad g=\dfrac a{\sqrt d}, \tag2\\ \end{align} $$\begin{align} &y_1=1,\quad y_2=g,\\ &y_3=dg^2-1=dg^2-S_0,\\ &y_4=d^3g^3-(d^2+1)g=d^3g^3-S_2g,\\ &y_5=d^6g^4-(d^5+d^3+d)g^2+1 = d^6g^4-S_4dg^2+1,\\ &y_6=d^{10}g^5-(d^9+d^7+d^5+d^3)g^3 +(d^4+d^2+1)g=d^{10}g^5-S_6d^3g^3+S_4g,\\ &y_7=d^{15}g^6-S_8d^6g^4+(S_6+d^3)dg^2-1=d^{15}g^6-S_8d^6g^4+(S_6+d^3)dg^2-1,\\ &y_8=d^{21}g^7-S_{10}d^{10}g^5+(S_{12}+d^6)d^3g^3=d^{21}g^7-S_{10}d^{10}g^5+S_6(d^6+1)d^3g^3,\\ &y_9=d^{28}g^8-S_{12}d^{15}g^6+(S_{14}+d^{12}+d^{10}+2d^8+d^6+d^4)d^6g^4\\ &-(S_{12}+d^8+d^6+d^4)dg^2+1\\ &=d^{28}g^8-S_{12}d^{15}g^6+(S_{10}+d^8)(d^4+1)d^6g^4-S_{10}(d^4+1)dg^2+1\dots,\\ \end{align}\tag3$$ wherein simple regularities can be obtained only for the first and last terms.

$$\mathbf{\color{brown}{Using\ recurrence\ relation.}}$$

Let us consider the behavior of the recurrence relation $$y_{n+2}+sy_{n+1}+y_{n}=0,\quad y_1=b_1,\quad y_2=b_2,\quad b\not=0.\tag4$$ The characteristic equation $$t^2+st+1=0\tag5$$ has the roots $$t_{1,2} = -\frac s2 \pm \frac{\sqrt{s^2-4}}2,\tag6$$ so the common solution is $$y_n=C_1t_1^{n}+C_2t_2^{n}.\tag7$$

$\mathbf{Case\ s^2-4<0.}$

Easy to see that $|t_1|=|t_2|=1.$ The sequence $y_n$ is bounded if $\mathbf{|s|<2}.$

$\mathbf{Case\ s^2-4=0.}$

The sequence $y_n$ is bounded if $\mathbf{s=\pm2}.$

$\mathbf{Case\ s^2-4 > 0.}$

Let $|t_1|<1,$ then the sequence $y_n$ converges to $0$ iff $C_2=0,$ or iff $\mathbf{|s|\ge2,\quad b_2=b_1t_1}.$

Therefore, the sequence $y_n$ converges to $0$ if $\mathbf{|s|\ge2,\quad b_2=b_1t_1}.$

$$\mathbf{\color{brown}{Case\ g=0.}}$$ Equation $(2)$ transforms to $$y_{n+2}+y_n=0$$ of the type $(4)$ with $s=0.$ So $\mathbf{z_n\ are\ bounded\ and\ x_n\to 0}.$

$$\mathbf{\color{brown}{Case\ d\not=0,\quad g\not=0}}$$

$\mathbf{\color{green}{Splitting}}$

Let us split the even and the odd subsequences of $y_n,$ \begin{align} &y_{n+2} = d^ngy_{n+1} - y_n = d^ng(d^{n-1}gy_n-y_{n-1})-y_n = (d^{2n-1}g^2-1)y_n-d^ngy_{n-1}\\ &=(d^{2n+1}g^2-1)y_n-d^2(y_n+y_{n-2}),\\ \end{align} $$\boxed{y_{n+2}=(d^{2n-1}g^2-d^2-1)y_n-d^2y_{n-2}}.\tag8$$ Formulas $(8)$ can be easily checked, using $(3)$.

This allow to consider the odd ($n=2k-1$) and the even ($n=2k)$ subsequences such as $$z_{k+2}^{(Odd)} = (d^{4k-3}g^2-d^2-1)z_{k+1}^{(Odd)} - d^2z_{k}^{(Odd)},\quad z_{1}^{(Odd)} = 1,\quad z_{n+2}^{(Odd)} = dg^2 - 1,\tag{8O}$$ $$z_{k+2}^{(Even)} = (d^{4k-1}g^2-d^2-1)z_{k+1}^{(Even)} - d^2z_{k}^{(Even)},\quad z_{1}^{(Even)} = g,\quad z_{n+2}^{(Even)} = d^3g^3 - (d^2+1)g.\tag{8E}$$

$\mathbf{\color{green}{Case\ 0<|d|<1}}$

Easy to see that for arbitrary value of $g$ $$\lim\limits_{n\to\infty}d^{2n-1}g^2 = 0,$$ and the asymptotic behavior both the even and the odd subsequences of $y_n$ is defined by the recurrence relation $$z_{n+2}+(d^2+1)z_{n+1}+d^2y_n=0.\tag9$$ The characteristic equation of $(9)$ is $$t^2+(d^2+1)t+d^2=0,\tag{10},$$ with the roots $t_1=-1$ and $t_2=-d^2.$ This gives the common solution of $(9)$ in the form of $$z_{n+2} = C_1(-1)^n+C_2(-d^2)^n.\tag{11}$$ Easy to show that $\mathbf{z_n\ are\ bounded\ and\ x_n\to 0}.$

$\mathbf{\color{green}{Case\ |d|=1}}$

Equation $(2)$ takes the form of $$z_{n+2}+gz_{n+1}+z_n=0,\tag{12}$$ similar as $(4).$ So $\mathbf{x_n\to 0\ if\ g\in[-2,2]}.$

Attempt to satisfy conditions $t_1b_1=b_2$ in the same time for the both of the subsequences $z_n$ leads to the equation $(g^2-1)g=g^3-2g$, so there are not solutions with another values of $g$.

$\mathbf{\color{green}{Extended\ recurrence\ relation.}}$

All attemps to get the closed form of the solution were not successul.

At the same time, recursive applying of $(8)$ gives for $i=0\dots3:$ \begin{align} &y_{4m+i} = d^{8(m-1)+2i+3}g^2y_{4(m-1)+i+2}-(d^2+1)(y_{4(m-1)+i+2}+y_{4(m-1)+i})\\[4pt] &+ d^{8(m-2)+2i+3}g^2y_{4(m-2)+i+2}-(d^2+1)(y_{4(m-2)+i-2}+y_{4(m-2)+i-4})\\[4pt] &+ d^{8(m-3)+2i+3}g^2y_{4(m-3)+i+2}-(d^2+1)(y_{4(m-3)+i-2}+y_{4(m-3)+i-4})+\dots,\\[4pt] \end{align} $$\color{brown}{y_{4m+i}= \sum\limits_{k=0}^{m-1}\left(d^{8k+2i+3}g^2y_{4k+i+2}-(d^2+1)\left(y_{4k+i+2}+y_{4k+i}\right)\right)}.\tag{13}$$

$\mathbf{\color{green}{Case\ \quad |d|>1}}$

Assume $$y_m=Cp^m,\tag{14}$$ then, using $(13),$ one can get $$p^{4m+i}+(d^2+1)p^i\frac{p^{4m}-1}{p^2-1}=d^{2i+3}p^{i+2}\frac{d^{8m}p^{4m}-1}{d^8p^4-1}g^2,$$ or $$\frac{p^{4m+2}-1}{p^2-1}+d^2\frac{p^{4m}-1}{p^2-1}=d^{2i+3}p^2\frac{d^{8m}p^{4m}-1}{d^8p^4-1}g^2.\tag{15}$$

$$\mathbf{Case\ |p|>1}.$$

$\mathbf{Both\ y_m\ and\ x_m\ are\ not\ bounded\ }.$

$$\mathbf{Case\ |p|\to 1}.$$

$$LHS(15)\sim 2m(d^2+1)+1,\quad RHS(15)\sim d^{2i-1}g^2(d^4p^2)^{2m-1}.$$ $\mathbf{There\ are\ not\ solutions\ in\ the\ form\ (14)}.$

$$\mathbf{Case\ 1>|p|>\frac1{d^2}}.$$

$$LHS(15)\to \dfrac{d^2+1}{1-p^2}\le \dfrac{d^2+1}{1-d^{-4}}=\dfrac{d^4}{d^2-1},$$ $$RHS(15)\sim d^{2i-1}g^2(d^4p^2)^{2m-1}.$$ $\mathbf{There\ are\ not\ solutions\ in\ the\ form\ (14)}.$

$$\mathbf{Case\ |p|\to\frac1{d^2}}.$$

$$LHS(15)\to \dfrac{d^2+1}{1-p^2}\to \dfrac{d^2+1}{1-d^{-4}}=\dfrac{d^4}{d^2-1},$$ $$RHS(15)\sim d^{2i-1}g^2m.$$ $\mathbf{There\ are\ not\ solutions\ in\ the\ form\ (14)}.$

$$\mathbf{Case\ |p|<\frac1{d^2}}.$$

$$LHS(15)\to \dfrac{d^2+1}{1-p^2},\quad RHS(15)\to\frac{d^{2i+3}p^2}{1-p^4d^8}g^2.$$ If $|p|$ changes from $0$ to $\frac1{d^2},$ then $LHS(15)$ increases from $(d^2+1)$ to $\frac{d^4}{d^2-1}.$

On the other hand, $|RHS(15)|$ increases from $0$ to $\infty.$

If $d<-1,\quad i\in\{1,3\}$ then $RHS(15)\le0.$ Otherwise $RHS(15)\ge0.$

So $\mathbf{x_m\to 0\ iff\ d>1}.$

$$\mathbf{\color{brown}{Conclusion.}}$$

Therefore, the given sequence converges to $0$ iff $$\mathbf{\color{brown}{(|d|<1)\ or\ ((|d|=1) \wedge (|g|\ge2)\ or\ (d>1)}}.$$

$\endgroup$
7
  • $\begingroup$ @Chilote See Appendium $\endgroup$ Commented Jul 18, 2018 at 12:47
  • 1
    $\begingroup$ Can you exaplin how the recurrence reduces to $y_{n+2}=d^{2n-1}g^2y_n$ for $d>1$? Thanks $\endgroup$ Commented Jul 19, 2018 at 9:12
  • 1
    $\begingroup$ @YuriNegometyanov what do you mean by "simple regularities", "extreme terms", and "$y_n$ and $x_n$ are not converged" ? Also, can you answer Fabio Lucchini's question, please? Thanks $\endgroup$ Commented Jul 19, 2018 at 13:41
  • $\begingroup$ @Chilote Thanks for the comments! See the updated answer. $\endgroup$ Commented Jul 19, 2018 at 14:07
  • $\begingroup$ @FabioLucchini Thanks for the comments! See the updated answer. $\endgroup$ Commented Jul 19, 2018 at 14:08
1
$\begingroup$

I am not convinced, yet, that what follows below is right (I'm sure there's a flaw in there somewhere), but I feel it's worth posting so that others can check for errors...


Suppose that $y_n=x_{n+1}-A_n x_n$. Now, we can observe that $$\begin{align} y_{n+1}=x_{n+2}-A_{n+1}x_{n+1} &= (ad^n-A_{n+1}) x_{n+1} - dx_n\\ &=(ad^n-A_{n+1})\left(x_{n+1}-\frac{d}{ad^n-A_{n+1}}x_n\right) \end{align}$$ To keep our expression independent of $x_n$, we require that $$ A_n=\frac{d}{ad^n-A_{n+1}} $$ or $$ A_{n+1}=ad^n-\frac{d}{A_n} $$ Note that this expression does not depend on $x_n$ in any way, and we can choose $A_0$ as we please (so long as $A_n$ never takes the value of 0).

Now, if we have an $A_n$ satisfying this expression, then we have $$ y_{n+1}=(ad^n-A_{n+1})y_n = \frac{d}{A_n}y_n $$ Also note that $y_0=a-A_0$. If $|A_n|$ is small, then $y_n$ will grow. If $|A_n|>d$, then $y_n$ will shrink.

If $A_n$ remains bounded, then for $x_n$ to converge to zero, it is necessary and sufficient that $y_n$ converge to zero.

From these two facts, we conclude that, if there exists an $A_0\neq a$ for which $|A_n|$ is bounded above by $d$ for sufficiently large $n$, then $x_n$ cannot converge to zero.

This, however, causes a problem. Returning to the original recurrence, dividing by $x_{n+1}$ and letting $B_n=\frac{x_{n+1}}{x_n}$, we obtain $$ B_{n+1}=ad^n-\frac{d}{B_n} $$ Now, if $x_n\to 0$, then $|B_n|$ is bounded above by 1 for sufficiently large $n$, at least in terms of geometric mean. Of course, B_0=a$, and thus this fact itself does not indicate that convergence cannot be obtained.

However, consider $A_0=a+\epsilon$ for a small value, $\epsilon$. We can easily see that $$ \frac{dA_{n+1}}{d\epsilon} = \frac{d}{A_n^2}\frac{dA_n}{d\epsilon} $$ and therefore, $\frac{dA_n}{d\epsilon}$ will stabilise when $A_n\to \sqrt{d}$, limiting the impact for sufficiently small $\epsilon$. And as $\sqrt{d}<d$ (because $d>1$), we therefore conclude that $\exists\epsilon$ such that $|A_n|$ remains bounded above by $d$.

From this, we can conclude (by contradiction) that there cannot be a value of $a$ for which $x_n$ converges to zero, so long as $d>1$.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.