$$\mathbf{\color{green}{FINAL\ EDITION}}$$
$$\mathbf{\color{brown}{Case\ d=0}}$$
If $d=0,$ then
\begin{align}
&x_1=1,\quad x_2=a,\quad x_n=0,\quad n=3, 4,\dots.
\end{align}
Then $\mathbf{x_n\to 0.}$
$$\mathbf{\color{brown}{Case\ d\not=0.\ Sequence\ transformation}}$$
Easily to get
\begin{align}
&x_1=1,\quad x_2=a,\quad x_{1+2} = ad^1\cdot a-d\cdot1 = d(a^2-1),\\[4pt]
&x_{2+2} = ad^2\cdot d(a^2-1)- d\cdot a = ad(d^2(a^2-1)-1),\\[4pt]
&x_{3+2} = ad^3\cdot ad(d^2(a^2-1)-1) - d\cdot d(a^2-1) = d^2(a^2d^2(d^2(a^2-1)-1))-(a^2-1))\dots
\end{align}
Let
$$x_n = d^{n/_2\ }y_{n},\quad n=1, 2,\dots,\tag1$$
then
\begin{align}
&d^{\frac{n+2}2}y_{n+2} = ad^nd^{\frac{n+1}2}y_{n+1} - d^{\frac{n}2}dy_n,\\[4pt]
&y_{n+2}=gd^ny_{n+1}-y_n,\quad g=\dfrac a{\sqrt d}, \tag2\\
\end{align}
$$\begin{align}
&y_1=1,\quad y_2=g,\\
&y_3=dg^2-1=dg^2-S_0,\\
&y_4=d^3g^3-(d^2+1)g=d^3g^3-S_2g,\\
&y_5=d^6g^4-(d^5+d^3+d)g^2+1 = d^6g^4-S_4dg^2+1,\\
&y_6=d^{10}g^5-(d^9+d^7+d^5+d^3)g^3 +(d^4+d^2+1)g=d^{10}g^5-S_6d^3g^3+S_4g,\\
&y_7=d^{15}g^6-S_8d^6g^4+(S_6+d^3)dg^2-1=d^{15}g^6-S_8d^6g^4+(S_6+d^3)dg^2-1,\\
&y_8=d^{21}g^7-S_{10}d^{10}g^5+(S_{12}+d^6)d^3g^3=d^{21}g^7-S_{10}d^{10}g^5+S_6(d^6+1)d^3g^3,\\
&y_9=d^{28}g^8-S_{12}d^{15}g^6+(S_{14}+d^{12}+d^{10}+2d^8+d^6+d^4)d^6g^4\\
&-(S_{12}+d^8+d^6+d^4)dg^2+1\\
&=d^{28}g^8-S_{12}d^{15}g^6+(S_{10}+d^8)(d^4+1)d^6g^4-S_{10}(d^4+1)dg^2+1\dots,\\
\end{align}\tag3$$
wherein simple regularities can be obtained only for the first and last terms.
$$\mathbf{\color{brown}{Using\ recurrence\ relation.}}$$
Let us consider the behavior of the recurrence relation
$$y_{n+2}+sy_{n+1}+y_{n}=0,\quad y_1=b_1,\quad y_2=b_2,\quad b\not=0.\tag4$$
The characteristic equation
$$t^2+st+1=0\tag5$$
has the roots
$$t_{1,2} = -\frac s2 \pm \frac{\sqrt{s^2-4}}2,\tag6$$
so the common solution is
$$y_n=C_1t_1^{n}+C_2t_2^{n}.\tag7$$
$\mathbf{Case\ s^2-4<0.}$
Easy to see that $|t_1|=|t_2|=1.$
The sequence $y_n$ is bounded if $\mathbf{|s|<2}.$
$\mathbf{Case\ s^2-4=0.}$
The sequence $y_n$ is bounded if $\mathbf{s=\pm2}.$
$\mathbf{Case\ s^2-4 > 0.}$
Let $|t_1|<1,$ then the sequence $y_n$ converges to $0$ iff $C_2=0,$ or iff $\mathbf{|s|\ge2,\quad b_2=b_1t_1}.$
Therefore, the sequence $y_n$ converges to $0$ if $\mathbf{|s|\ge2,\quad b_2=b_1t_1}.$
$$\mathbf{\color{brown}{Case\ g=0.}}$$
Equation $(2)$ transforms to
$$y_{n+2}+y_n=0$$
of the type $(4)$ with $s=0.$
So $\mathbf{z_n\ are\ bounded\ and\ x_n\to 0}.$
$$\mathbf{\color{brown}{Case\ d\not=0,\quad g\not=0}}$$
$\mathbf{\color{green}{Splitting}}$
Let us split the even and the odd subsequences of $y_n,$
\begin{align}
&y_{n+2} = d^ngy_{n+1} - y_n = d^ng(d^{n-1}gy_n-y_{n-1})-y_n = (d^{2n-1}g^2-1)y_n-d^ngy_{n-1}\\
&=(d^{2n+1}g^2-1)y_n-d^2(y_n+y_{n-2}),\\
\end{align}
$$\boxed{y_{n+2}=(d^{2n-1}g^2-d^2-1)y_n-d^2y_{n-2}}.\tag8$$
Formulas $(8)$ can be easily checked, using $(3)$.
This allow to consider the odd ($n=2k-1$) and the even ($n=2k)$ subsequences such as
$$z_{k+2}^{(Odd)} = (d^{4k-3}g^2-d^2-1)z_{k+1}^{(Odd)} - d^2z_{k}^{(Odd)},\quad z_{1}^{(Odd)} = 1,\quad z_{n+2}^{(Odd)} = dg^2 - 1,\tag{8O}$$
$$z_{k+2}^{(Even)} = (d^{4k-1}g^2-d^2-1)z_{k+1}^{(Even)} - d^2z_{k}^{(Even)},\quad z_{1}^{(Even)} = g,\quad z_{n+2}^{(Even)} = d^3g^3 - (d^2+1)g.\tag{8E}$$
$\mathbf{\color{green}{Case\ 0<|d|<1}}$
Easy to see that for arbitrary value of $g$
$$\lim\limits_{n\to\infty}d^{2n-1}g^2 = 0,$$
and the asymptotic behavior both the even and the odd subsequences of $y_n$ is defined by the recurrence relation
$$z_{n+2}+(d^2+1)z_{n+1}+d^2y_n=0.\tag9$$
The characteristic equation of $(9)$ is
$$t^2+(d^2+1)t+d^2=0,\tag{10},$$
with the roots $t_1=-1$ and $t_2=-d^2.$
This gives the common solution of $(9)$ in the form of
$$z_{n+2} = C_1(-1)^n+C_2(-d^2)^n.\tag{11}$$
Easy to show that $\mathbf{z_n\ are\ bounded\ and\ x_n\to 0}.$
$\mathbf{\color{green}{Case\ |d|=1}}$
Equation $(2)$ takes the form of
$$z_{n+2}+gz_{n+1}+z_n=0,\tag{12}$$
similar as $(4).$ So $\mathbf{x_n\to 0\ if\ g\in[-2,2]}.$
Attempt to satisfy conditions $t_1b_1=b_2$ in the same time for the both of the subsequences $z_n$ leads to the equation $(g^2-1)g=g^3-2g$, so there are not solutions with another values of $g$.
$\mathbf{\color{green}{Extended\ recurrence\ relation.}}$
All attemps to get the closed form of the solution were not successul.
At the same time, recursive applying of $(8)$ gives for $i=0\dots3:$
\begin{align}
&y_{4m+i} = d^{8(m-1)+2i+3}g^2y_{4(m-1)+i+2}-(d^2+1)(y_{4(m-1)+i+2}+y_{4(m-1)+i})\\[4pt]
&+ d^{8(m-2)+2i+3}g^2y_{4(m-2)+i+2}-(d^2+1)(y_{4(m-2)+i-2}+y_{4(m-2)+i-4})\\[4pt]
&+ d^{8(m-3)+2i+3}g^2y_{4(m-3)+i+2}-(d^2+1)(y_{4(m-3)+i-2}+y_{4(m-3)+i-4})+\dots,\\[4pt]
\end{align}
$$\color{brown}{y_{4m+i}= \sum\limits_{k=0}^{m-1}\left(d^{8k+2i+3}g^2y_{4k+i+2}-(d^2+1)\left(y_{4k+i+2}+y_{4k+i}\right)\right)}.\tag{13}$$
$\mathbf{\color{green}{Case\ \quad |d|>1}}$
Assume
$$y_m=Cp^m,\tag{14}$$
then, using $(13),$ one can get
$$p^{4m+i}+(d^2+1)p^i\frac{p^{4m}-1}{p^2-1}=d^{2i+3}p^{i+2}\frac{d^{8m}p^{4m}-1}{d^8p^4-1}g^2,$$
or
$$\frac{p^{4m+2}-1}{p^2-1}+d^2\frac{p^{4m}-1}{p^2-1}=d^{2i+3}p^2\frac{d^{8m}p^{4m}-1}{d^8p^4-1}g^2.\tag{15}$$
$$\mathbf{Case\ |p|>1}.$$
$\mathbf{Both\ y_m\ and\ x_m\ are\ not\ bounded\ }.$
$$\mathbf{Case\ |p|\to 1}.$$
$$LHS(15)\sim 2m(d^2+1)+1,\quad RHS(15)\sim d^{2i-1}g^2(d^4p^2)^{2m-1}.$$
$\mathbf{There\ are\ not\ solutions\ in\ the\ form\ (14)}.$
$$\mathbf{Case\ 1>|p|>\frac1{d^2}}.$$
$$LHS(15)\to \dfrac{d^2+1}{1-p^2}\le \dfrac{d^2+1}{1-d^{-4}}=\dfrac{d^4}{d^2-1},$$
$$RHS(15)\sim d^{2i-1}g^2(d^4p^2)^{2m-1}.$$
$\mathbf{There\ are\ not\ solutions\ in\ the\ form\ (14)}.$
$$\mathbf{Case\ |p|\to\frac1{d^2}}.$$
$$LHS(15)\to \dfrac{d^2+1}{1-p^2}\to \dfrac{d^2+1}{1-d^{-4}}=\dfrac{d^4}{d^2-1},$$
$$RHS(15)\sim d^{2i-1}g^2m.$$
$\mathbf{There\ are\ not\ solutions\ in\ the\ form\ (14)}.$
$$\mathbf{Case\ |p|<\frac1{d^2}}.$$
$$LHS(15)\to \dfrac{d^2+1}{1-p^2},\quad RHS(15)\to\frac{d^{2i+3}p^2}{1-p^4d^8}g^2.$$
If $|p|$ changes from $0$ to $\frac1{d^2},$ then $LHS(15)$ increases from $(d^2+1)$ to $\frac{d^4}{d^2-1}.$
On the other hand, $|RHS(15)|$ increases from $0$ to $\infty.$
If $d<-1,\quad i\in\{1,3\}$ then $RHS(15)\le0.$ Otherwise $RHS(15)\ge0.$
So $\mathbf{x_m\to 0\ iff\ d>1}.$
$$\mathbf{\color{brown}{Conclusion.}}$$
Therefore, the given sequence converges to $0$ iff $$\mathbf{\color{brown}{(|d|<1)\ or\ ((|d|=1) \wedge (|g|\ge2)\ or\ (d>1)}}.$$