I am trying to understand definition of Euclidean norm on a finite dimensional space, $\mathbb{R}^{n}$, denoted as $\mathbb{E}$. The dual space is denoted by $\mathbb{E}^{*}$.
In the attached screenshot from this paper (see the highlighted section), the self-adjoint operator $B$ is used to define Euclidean norm on $\mathbb{E}$, and $\mathbb{E}^{*}$. In my knowledge, a self-adjoint operator maps one space to itself. for example $ X\rightarrow X.$
Therefore, my question is how we can use $B$ to define the norm.
Check for triangle inequality:
\begin{align} \langle B(x+y), x+y \rangle &= \langle Bx+By, x+y \rangle \\ &= \langle Bx,x\rangle + \langle Bx, y \rangle + \langle By, x\rangle + \langle By, y\rangle \\ &= \langle Bx,x\rangle + \langle y, Bx \rangle + \langle y, Bx\rangle + \langle By, y\rangle\; (B \text{ is self-adjoint}) \\ &\leq \|x\|^{2} + \|y\|^{2} +2 |\langle y, Bx \rangle| . \end{align}
Next, we have
\begin{align} |\langle y, Bx \rangle|&= |\langle \sqrt{B}y, \sqrt{B}x \rangle| \; ( \because B>0, \sqrt{B} \; \text{exists}) \\ &\leq \sqrt{\langle Bx, x \rangle} \sqrt{\langle By, y \rangle} \; (\text{Cauchy schwartz})\\ &= \|x\|\|y\| . \end{align}
Therefore, we end up with
$$ \|x+y\|^{2} \leq (\|x\|+\|y\|)^{2} .$$
I have given my proof for triangle inequality for the inner product defined in the screenshot, as advised by the other members.
