$\def\sl{\operatorname{sl}}\def\cl{\operatorname{cl}}\def\tl{\operatorname{tl}}\def\cscl{\operatorname{cscl}}\def\secl{\operatorname{secl}}\def\cotl{\operatorname{cotl}}\def\d{\,\mathrm{d}}$ The lemniscate sine "sl" and lemniscate cosine "cl" are defined as the solutions to:
$\displaystyle\frac{\partial}{\partial z}\,\sl(z)=\left(1+\sl^{2}(z)\right)\cl(z),\quad\frac{\partial}{\partial z}\,\cl(z)=-\left(1+\cl^{2}(z)\right)\sl(z),\quad \sl(0)=0,\quad \cl(0)=1$
or alternatively:
$\displaystyle\begin{aligned} \frac{\partial^2 y}{\partial z^2} &= -2y^3 \\ y &= \sl(z) = \operatorname{sn}(z\,\vert-1)\rightarrow y(0)=0, y^\prime(0)=1 \\ y &= \cl(z) = \operatorname{cd}(z\,\vert-1)\rightarrow y(0)=1, y^\prime(0)=0 \\ \end{aligned}$
where "sn" and "cd" are Jacobi elliptic integrals.
Looking at Wikipedia's article on the lemniscate functions, we see that:
$\begin{aligned} \sl(x+y) &= \frac{\sl(x)\cl(y)+\cl(x)\sl(y)}{1-\sl(x)\sl(y)\cl(x)\cl(y)} \\ \cl(x+y) &= \frac{\cl(x)\cl(y)-\sl(x)\sl(y)}{1+\sl(x)\sl(y)\cl(x)\cl(y)} \end{aligned}$
We know the formula for the circular tangent of the sum of two angles:
$\displaystyle\tan(x+y)=\frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}$
If we define the "lemniscate tangent" as the ratio of the lemniscate sine to the lemniscate cosine in the same way the circular tangent is defined, i.e.
$\displaystyle\tl(z)=\frac{\sl(z)}{\cl(z)}=\operatorname{sn}(z\,\vert-1)\cdot\operatorname{dc}(z\,\vert-1)$
then this is what I've got for the lemniscate tangent's sum-of-angles identity:
$\begin{aligned} \tl(x+y) &= \frac{\sl(x+y)}{\cl(x+y)} \\ &= \frac{\frac{\sl(x)\cl(y)+\cl(x)\sl(y)}{1-\sl(x)\sl(y)\cl(x)\cl(y)}}{\frac{\cl(x)\cl(y)-\sl(x)\sl(y)}{1+\sl(x)\sl(y)\cl(x)\cl(y)}} \\ &= \underbrace{\left(\frac{\sl(x)\cl(y)+\cl(x)\sl(y)}{\cl(x)\cl(y)-\sl(x)\sl(y)}\right)}_{p}\underbrace{\left(\frac{1+\sl(x)\sl(y)\cl(x)\cl(y)}{1-\sl(x)\sl(y)\cl(x)\cl(y)}\right)}_{q} \end{aligned}$
I'm aware that you can divide the numerator and denominator of $p$ by $\cl(x)\cl(y)$, which gives us $\displaystyle p=\frac{\tl(x)+\tl(y)}{1-\tl(x)\tl(y)}$, reminiscent of the summation identity for the circular tangent.
My question is: Is it possible to express $\displaystyle q=\frac{1+\sl(x)\sl(y)\cl(x)\cl(y)}{1-\sl(x)\sl(y)\cl(x)\cl(y)}$ solely in terms of $\tl(x)$ and $\tl(y)$?