2
$\begingroup$

$\def\sl{\operatorname{sl}}\def\cl{\operatorname{cl}}\def\tl{\operatorname{tl}}\def\cscl{\operatorname{cscl}}\def\secl{\operatorname{secl}}\def\cotl{\operatorname{cotl}}\def\d{\,\mathrm{d}}$ The lemniscate sine "sl" and lemniscate cosine "cl" are defined as the solutions to:

$\displaystyle\frac{\partial}{\partial z}\,\sl(z)=\left(1+\sl^{2}(z)\right)\cl(z),\quad\frac{\partial}{\partial z}\,\cl(z)=-\left(1+\cl^{2}(z)\right)\sl(z),\quad \sl(0)=0,\quad \cl(0)=1$

or alternatively:

$\displaystyle\begin{aligned} \frac{\partial^2 y}{\partial z^2} &= -2y^3 \\ y &= \sl(z) = \operatorname{sn}(z\,\vert-1)\rightarrow y(0)=0, y^\prime(0)=1 \\ y &= \cl(z) = \operatorname{cd}(z\,\vert-1)\rightarrow y(0)=1, y^\prime(0)=0 \\ \end{aligned}$

where "sn" and "cd" are Jacobi elliptic integrals.

Looking at Wikipedia's article on the lemniscate functions, we see that:

$\begin{aligned} \sl(x+y) &= \frac{\sl(x)\cl(y)+\cl(x)\sl(y)}{1-\sl(x)\sl(y)\cl(x)\cl(y)} \\ \cl(x+y) &= \frac{\cl(x)\cl(y)-\sl(x)\sl(y)}{1+\sl(x)\sl(y)\cl(x)\cl(y)} \end{aligned}$

We know the formula for the circular tangent of the sum of two angles:

$\displaystyle\tan(x+y)=\frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}$

If we define the "lemniscate tangent" as the ratio of the lemniscate sine to the lemniscate cosine in the same way the circular tangent is defined, i.e.

$\displaystyle\tl(z)=\frac{\sl(z)}{\cl(z)}=\operatorname{sn}(z\,\vert-1)\cdot\operatorname{dc}(z\,\vert-1)$

then this is what I've got for the lemniscate tangent's sum-of-angles identity:

$\begin{aligned} \tl(x+y) &= \frac{\sl(x+y)}{\cl(x+y)} \\ &= \frac{\frac{\sl(x)\cl(y)+\cl(x)\sl(y)}{1-\sl(x)\sl(y)\cl(x)\cl(y)}}{\frac{\cl(x)\cl(y)-\sl(x)\sl(y)}{1+\sl(x)\sl(y)\cl(x)\cl(y)}} \\ &= \underbrace{\left(\frac{\sl(x)\cl(y)+\cl(x)\sl(y)}{\cl(x)\cl(y)-\sl(x)\sl(y)}\right)}_{p}\underbrace{\left(\frac{1+\sl(x)\sl(y)\cl(x)\cl(y)}{1-\sl(x)\sl(y)\cl(x)\cl(y)}\right)}_{q} \end{aligned}$

I'm aware that you can divide the numerator and denominator of $p$ by $\cl(x)\cl(y)$, which gives us $\displaystyle p=\frac{\tl(x)+\tl(y)}{1-\tl(x)\tl(y)}$, reminiscent of the summation identity for the circular tangent.

My question is: Is it possible to express $\displaystyle q=\frac{1+\sl(x)\sl(y)\cl(x)\cl(y)}{1-\sl(x)\sl(y)\cl(x)\cl(y)}$ solely in terms of $\tl(x)$ and $\tl(y)$?

$\endgroup$
2
  • $\begingroup$ The "Pythagorean-like identities" help. $\endgroup$ Commented yesterday
  • $\begingroup$ @Blue Could you tell me how this can be used to simplify $q$? $\endgroup$ Commented 4 hours ago

1 Answer 1

0
$\begingroup$

Defining $s:=\operatorname{sl}(z)$, $c:=\operatorname{cl}(z)$, $t:=\operatorname{tl}(z)=\dfrac{s}{c}$, the Pythagorean-like relation $c^2+s^2+c^2s^2=1$ allows us to write $$s^2=\frac{1-c^2}{1+c^2} \quad\to\quad t^2=\frac{1-c^2}{c^2(1+c^2)}\quad\to\quad c=\pm\sqrt{\frac{-(1 + t^2) +\sqrt{(1+t^2)^2+4t^2}}{2 t^2}} \tag1$$ Then, we can note that $$sc=c^2t=\frac{-(1 + t^2) +\sqrt{(1+t^2)^2+4t^2}}{2 t} \tag2$$ This gives expressions to replace $\operatorname{sl}(x)\operatorname{cl}(x)$ and $\operatorname{sl}(y)\operatorname{cl}(y)$ in $q$.

The messy result simplifies with a bit rationalizing. Writing $t_x:=\operatorname{tl}(x)$ and $t_y:=\operatorname{tl}(y)$, we find $$\begin{align} q &= \frac{ t_x\sqrt{(1+t_y)^2 +4 t_y^2} + t_y\sqrt{(1+t_x)^2+4t_x^2}}{(t_x + t_y) (1 + t_x t_y)} \tag3 \\[8pt] &= \frac{ \sqrt{1+m_x^2} + \sqrt{1+m_y^2}}{m_x+m_y} \qquad \text{where}\quad m_z := \frac12\left(t_z+\dfrac1{t_z}\right) \tag4 \end{align}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.