I failed to color my parametric plot of multiple iterations of a differential equation system by elapsed time (t).
The equation is:
a = 3
sx = 0.34
sy = 0.33
sol11 = Table[NDSolve[{x'[t] ==
y[t]*((x[t]^a) sx) + (1 - x[t] - y[t])*((x[t]^a)*sx) -
x[t]*((y[t]^a)*sy) - x[t]*((1 - x[t] - y[t])^a)*(1 - sx - sy),
y'[t] ==
x[t]*((y[t]^a) sy) + (1 - x[t] - y[t])*((y[t]^a)*sy) -
y[t]*((x[t]^a)*sx) - y[t]*((1 - x[t] - y[t])^a)*(1 - sx - sy),
x[0] == i, y[0] == j}, {x[t], y[t]}, {t, 400}], {i, {0.315, 0.345,
0.355, 0.360, 0.362, 0.265, 0.268, 0.275, 0.285, 0.295, 0.365,
0.39, 0.39, 0.393, 0.4}}, {j, {0.395, 0.385, 0.375, 0.365, 0.355,
0.335, 0.325, 0.315, 0.305, 0.3, 0.360, 0.40, 0.27, 0.27, 0.225}}]
Here there are two differential equations as a system and I use the Table function to conveniently produce many solutions with varying initial parameters.
param11 = ParametricPlot[{Evaluate[{x[t], y [t]} /. Flatten[sol11, 2]]}, {t, 0, 400},
ColorFunction -> Function[{x, y, t}, Hue[t]],
ColorFunctionScaling -> False, WorkingPrecision -> 10,
FrameLabel -> {"x", "y"}, RotateLabel -> False, AspectRatio -> 1,
LabelStyle -> Black, Frame -> True, Axes -> True,
FrameStyle -> Directive[FontFamily -> "Times", 14],
PlotStyle -> {Dashing[{0.005, 0.006, 0.006, 0.006}]},
GridLines -> Automatic, ImageSize -> Large, PlotRange -> All]
This however produces my graph with hue varying from one edge to the other. I wish the color to represent each iterations time variable, since the axis of the plot represent agents of both equations.
The idea being, color would allow me to show even more information on one image.
Thanks in advance.
