I wrote the following code:
u = {{{7, 3}, {4, 1}, {2, 8}, {6, 5}},
{{1, 4}, {5, 2}, {3, 1}, {8, 6}},
{{7, 3}, {6, 3}, {4, 2}, {1, 8}},
{{2, 6}, {8, 4}, {5, 3}, {2, 1}},
{{7, 8}, {1, 1}, {6, 4}, {3, 2}},
{{2, 1}, {2, 6}, {2, 5}, {4, 3}},
{{7, 2}, {3, 8}, {1, 6}, {5, 4}}};
v = Table[If[u[[j, k, 1]] == i || u[[j, k, 2]] == i, 1, 0],
{i, 8}, {j, 7}, {k, 4}];
w = Table[Sum[v[[i, j, k]], {k, 4}], {i, 8}, {j, 7}];
x = Table[Sum[v[[i, j, k]], {i, 8}], {j, 7}, {k, 4}];
y = Table[Sum[v[[i1, j, k]] v[[i2, j, k]], {j, 7}, {k, 4}],
{i1, 8}, {i2, i1 + 1, 8}];
z = Table[Sum[(v[[i1, j, 2 l - 1]] + v[[i1, j, 2 l]])
(v[[i2, j, 2 l - 1]] + v[[i2, j, 2 l]]),
{j, 7}, {l, 2}], {i1, 8}, {i2, i1 + 1, 8}];
Total[Flatten[Abs[{w - 1, x - 2, y - 1, z - 3}]]]
which reproduces correct results as the numbers in u vary.
Question:
Can it be optimized by making the most of
Mathematica's capabilities?