Extending my comments into a solution:
First, convert the integral equation into a differential equation:
$$
G(t,x)=X_0(x)+t V_0(x)-\frac12\int_0^t ds \int_0^1 dw\,\text{sign}\left[G(s,w)-G(s,x)\right]
$$
$$
\frac{\partial G(t,x)}{\partial t}=V_0(x)-\frac12\int_0^1 dw\,\text{sign}\left[G(t,w)-G(t,x)\right]
$$
Then, introduce a set of values $\xi_0,\xi_1,\ldots,\xi_n$ that cover the range $[0,1]$, so that we can do the $dw$ integral numerically. For example, we could set the $\xi_i$ from Gauss–Legendre integration. Here I'll do something simpler and use the trapezoidal rule, setting $\xi_i=i/n$.
The integral over $dw$ is therefore
$$
\int_0^1 dw\,\text{sign}\left[G(t,w)-G(t,x)\right] \approx
\frac{1}{2n} \text{sign}\left[G(t,\xi_0)-G(t,x)\right]
+ \frac{1}{n} \sum_{i=1}^{n-1}\text{sign}\left[G(t,\xi_i)-G(t,x)\right]
+\frac{1}{2n} \text{sign}\left[G(t,\xi_n)-G(t,x)\right]
$$
The differential equation at point $\xi_j$ is thus
$$
\frac{\partial G(t,\xi_j)}{\partial t}\approx V_0(\xi_j)-\frac{1}{2n}\left[
\frac12 \text{sign}\left[G(t,\xi_0)-G(t,\xi_j)\right]
+ \sum_{i=1}^{n-1}\text{sign}\left[G(t,\xi_i)-G(t,\xi_j)\right]
+\frac12 \text{sign}\left[G(t,\xi_n)-G(t,\xi_j)\right]
\right]
$$
This is a system of $n+1$ coupled differential equations for the functions $G_j(t)=G(t,\xi_j)$:
$$
G_j(0)= X(\xi_j)\\
G_j'(t)=V_0(\xi_j)-\frac{1}{2n}\left[
\frac12 \text{sign}\left[G_0(t)-G_j(t)\right]
+ \sum_{i=1}^{n-1}\text{sign}\left[G_i(t)-G_j(t)\right]
+\frac12 \text{sign}\left[G_n(t)-G_j(t)\right]
\right]
$$
By choosing $n$ sufficiently large, we can get a high-resolution approximation for the $x$-dependence.
X0[x_] = Piecewise[{{-85/4, 0 <= x <= 1/4}, {15/4, 1/4 < x <= 1/2}, {35/4, 1/2 < x <= 1}}];
V0[x_] = Piecewise[{{4, 0 <= x <= 1/4}, {0, 1/4 < x <= 1/2}, {-2, 1/2 < x <= 1}}];
n = 5;
ξ[i_] = i/n;
sol[t_] = NDSolveValue[
Join[Table[G[j][0] == X0[ξ[j]], {j, 0, n}],
Table[G[j]'[t] == V0[ξ[j]] -
1/(2 n) (1/2 Sign[G[0][t] - G[j][t]] +
Sum[Sign[G[i][t] - G[j][t]], {i, 1, n - 1}] +
1/2 Sign[G[n][t] - G[j][t]]), {j, 0, n}]],
Table[G[j][t], {j, 0, n}],
{t, 0, 10},
Method -> {"DiscontinuityProcessing" -> False}]
Plot[Evaluate@sol[t], {t, 0, 10}, PlotTheme -> "Detailed",
FrameLabel -> {t, G}, PlotLegends -> (ξ /@ Range[0, n])]

Same with $n=64$ and rendered in 2D:
ListDensityPlot[Table[sol[t], {t, 0, 10, 1/10}],
ColorFunction -> "Rainbow", PlotLegends -> Automatic,
DataRange -> {{0, 1}, {0, 10}}, FrameLabel -> {x, t}]
